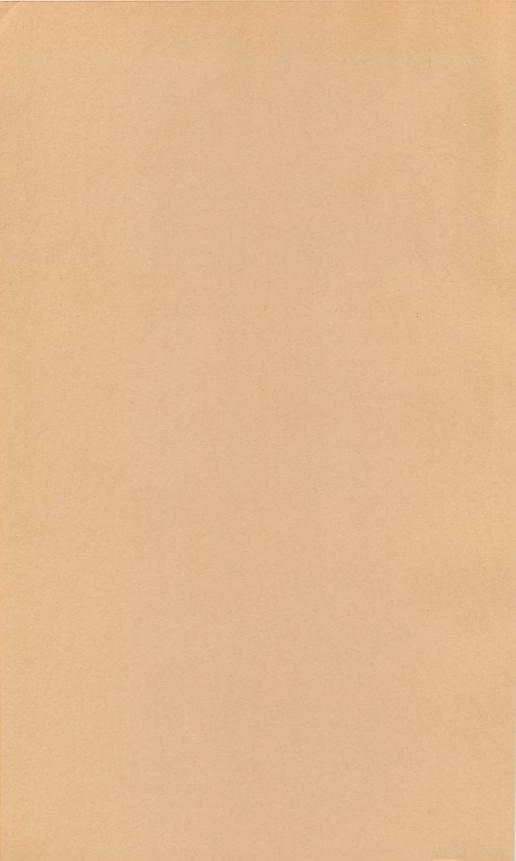
Water Resources of Mississippi

THAD N. SHOWS


BULLETIN 113

MISSISSIPPI GEOLOGICAL, ECONOMIC AND TOPOGRAPHICAL SURVEY

WILLIAM HALSELL MOORE DIRECTOR AND STATE GEOLOGIST

JACKSON, MISSISSIPPI 1970

PRICE \$2.00

Water Resources of Mississippi

THAD N. SHOWS

BULLETIN 113

MISSISSIPPI GEOLOGICAL, ECONOMIC AND TOPOGRAPHICAL SURVEY

WILLIAM HALSELL MOORE Director and State Geologist

JACKSON, MISSISSIPPI

1970

PRICE \$2.00

STATE OF MISSISSIPPI

Hon. J	ohn	Bell	WilliamsGove	ernor
--------	-----	------	--------------	-------

MISSISSIPPI GEOLOGICAL, ECONOMIC AND TOPOGRAPHICAL SURVEY

BOARD

Hon. S. F. Thigpen, Jr., Chairman	Bay Springs
Hon. Gordon W. Gulmon. Vice Chairman	Natchez
Hon. O. B. Curtis	Jackson
Hon. John K. Gresham	Greenville
Hon. Troy J. Laswell	State College

STAFF

William H. Moore	Director and State Geologist
Wilbur T. Baughman	Geologist
Alvin R. Bicker, Jr.	Geologist
Theo H. Dinkins, Jr.	Geologist
Thad N. Shows	Geologist
Margaret W. Paderewski	Secretary
Jean K. Spearman	Secretary
Michael E. McGregor	Logging Technician
Randall H. Warren	Driller

LETTER OF TRANSMITTAL

Office of the Mississippi Geological, Economic and

Topographical Survey

Jackson, Mississippi

August 6, 1970

Mr. S. F. Thigpen, Jr., Chairman, and Members of the Board Mississippi Geological, Economic and Topographical Survey

Gentlemen:

Herewith is Mississippi Geological Survey Bulletin 113, "Water Resources of Mississippi," by Thad N. Shows.

Bulletin 113 answers a long standing need of generalized information on both the surface water and ground water of the State. The information in this bulletin will enable private citizens, industry and governmental agencies to determine the water resources of their area of interest at a glance. This bulletin will be helpful in determining the wisest use of our valuable water resources.

Respectfuly submitted,

William H. Moore Director and State Geologist

WHM:js

WATER RESOURCES OF MISSISSIPPI

WATER RESOURCES OF MISSISSIPPI

CONTENTS

Water resources of Mississippi, by Thad N. Shows	
Abstract	11
Water in Mississippi	13
Water use	
Mississippi controls on water	
Fresh water in Mississippi	
Rural water systems in Mississippi	
Ground water	
Introduction	
Ground water occurrence	
Water wells	
Quality of water	23
Waste disposal in deep wells	
Water-bearing units	
Ground water in Area I	
Paleozoic aquifers	
Cretaceous aquifers	
Quality of water	35
Ground water in Area II	
Lower Cretaceous aquifers	45
Upper Cretaceous aquifers	
Tuscaloosa aquifer	46
Eutaw and McShan aquifers	
Coffee sand aquifer	
Ripley aquifer	
Quality of water	48
Ground water in Area III	
Coffee sand and Ripley aquifers	
Wilcox aquifer	66
Claiborne aquifers	67

MISSISSIPPI GEOLOGICAL SURVEY

	. Page
Meridian sand aquifer	
Kosciusko aquifer	69
Minor aquifers	70
Quality of water	
Ground water in Area IV	
Wilcox aquifer	
Claiborne aquifers	
Meridian sand aquifer	84
Tallahatta, undifferentiated aquifer	85
Kosciusko aquifer	
Cockfield aquifer	
Alluvial aquifer	
Quality of water	88
Ground water in Area V	
Claiborne aquifers	
Catahoula aquifer	
Hattiesburg aquifer	
Citronelle aquifer	
Quality of water	
Ground water in Area VI	
Catahoula aquifer	
Hattiesburg aquifer	
Pascagoula aquifer	
Citronelle aquifer	
Quality of water	116
Surface Water	
Introduction	
Surface water in Area I	
Quality of water	
Surface water in Area II	
Quality of water	
Surface water in Area III	

WATER RESOURCES OF MISSISSIPPI

Quality of water	140
Surface water in Area IV	140
Quality of water	
Surface water in Area V	145
Quality of water	
Surface water in Area VI	
Quality of water	
Conclusions	
Acknowledgements	
Selected references	

7

MISSISSISPPI GEOLOGICAL SURVEY

ILLUSTRATIONS

FIGURES

Page

1.	Mean annual precipitation		.14
2.	Configuration of the base of fresh-water in Mississippi	. facing	18
3.	Distribution of major ground-water aquifers		26
4.	Major ground-water divisions of the State for this report		.29
5.	Location of selected wells in Area I	facing	30
6.	Location of selected wells in Area II	facing	38
7.	Location of selected wells in Area III	facing	58
8.	Location of selected wells in Area IV	facing	82
9.	Location of selected wells in Area V	facing	94
10.	Location of selected wells in Area VI	facing 1	106
11.	Location of major streams, selected U.S.G.S. gaging stations and major surface-water divisions of the State	, .facing 1	122

TABLES

1.	Source and significance of common mineral constituents and physical properties and characteristics of water	. 23
2.	Water-quality tolerance for industrial application	27
3.	Stratigraphic column and water resources in Area I	30
4.	Records of selected wells in Area I	32
5.	Chemical analyses of water from wells in Area I	36
6.	Stratigraphic column and water resources in Area II	37
7.	Records of selected wells in Area II	38
8.	Chemical analyses of water from wells in Area II	49
9.	Stratigraphic column and water resources in Area III	56
10.	Records of selected wells in Area III	58
11.	Chemical analyses of water from wells in Area III	71
12.	Stratigraphic column and water resources in Area IV	79
13.	Records of selected wells in Area IV	80

WATER RESOURCES OF MISSISSIPPI

	Page
14.	Chemical analyses of water from wells in Area IV
15.	Stratigraphic column and water resources in Area V91
16.	Records of selected wells in Area V92
17.	Chemical aanlyses of water from wells in Area V101
18.	Stratigraphic column and water resources in Area VI107
19.	Records of selected wells in Area VI
20.	Chemical analyses of water from wells in Area VI117
21.	Summary of data from selected stream-gaging stations in Area I125
22.	Lowest mean discharge for 7 consecutive days at stream-gaging stations in Area I
23.	Chemical analyses of water from streams in Area I
24.	Summary of data from selected stream-gaging stations in Area II130
25.	Lowest mean discharge for 7 consecutive days at stream-gaging stations in Area II
26.	Chemical analyses of water from streams in Area II
27.	Summary of data from selected stream-gaging stations in Area III137
28.	Lowest mean discharge for 7 consecutive days at stream-gaging stations in Area III
29.	Chemical analyses of water from streams in Area III
30.	Summary of data from selected stream-gaging stations in Area IV143
31.	Lowest mean discharge for 7 consecutive days at stream-gaging stations in Area IV
32.	Chemical analyses of water from streams in Area IV 144
33.	Summary of data from selected stream-gaging stations in Area V 146
34.	Lowest mean discharge for 7 consecutive days at stream-gaging stations in Area V
35.	Chemical analyses of water from streams in Area V148
36.	Summary of data from selected stream-gaging stations in Area VI
37.	Lowest mean discharge for 7 consecutive days at stream-gaging stations in Area VI
38.	Chemical analyses of water from streams in Area VI156

BULLETIN 113

WATER RESOURCES OF MISSISSIPPI

by

THAD N. SHOWS

ABSTRACT

One of the most important natural resources in Mississippi is water. Large quantities of water are available for industrial, municipal and domestic purposes. Only a small part of the available water is presently being used.

All of the municipal water supplies in the State use ground water with the exception of Columbus, Jackson and Meridian (partly supplied by wells). A large number of industrial and irrigational supplies are from ground water sources. The fresh water section extends to a maximum thickness of about 3,500 feet in Smith County in central Mississippi. Most areas are underlain by at least one or more aquifers.

Aquifers vary with the geographic location in the State. The northeast corner of the State is underlain by Cretaceous and Paleozoic aquifers. The Cretaceous aquifers are the major source of supply in northeast Mississippi. The north central part of the State is underlain by the Claiborne and Wilcox aquifers. The Alluvium, Claiborne and Wilcox aquifers underlie northwest Mississippi. The Citronelle, Hattiesburg, Catahoula, Claiborne and Wilcox aquifers underlie central Mississippi. South Mississippi is underlain by the Citronelle, Graham Ferry, Pascagoula, Hattiesburg, and Catahoula aquifers.

Well yields vary according to need with most municipal and industrial wells yielding about 500 gpm (gallons per minute). Record yields of up to 5,000 gpm have been recorded in certain locations of the State. Numerous rural water systems and commercial catfish farm supply wells have been installed throughout the State in recent years. Water levels have not declined at a rapid rate except near areas of heavy pumpage and the average decline is 1 to 2 feet per year in those areas.

MISSISSIPPI GEOLOGICAL SURVEY

The quality of ground water is good for most general purposes, although some minor problems are present at particular locations. High iron concentration, low pH, excessive carbon dioxide content, and color are problems associated with some of the water. Minor to moderate treatment is generally satisfactory to correct most of the problems except for colored water.

A large volume of surface water is available for use from the various streams in the State. Streams vary in size, drainage area, and amount of stream flow. The cities of Jackson, Columbus and Meridian use surface water for their primary source of water supply. Numerous large industries use surface water at a number of locations in the State.

The major river systems in the State include the Tombigbee, Pascagoula, Pearl, Homochitto, Big Black and Yazoo rivers. A large number of smaller streams form a dendritic drainage pattern throughout most of the State. The streams have winding meanders, broad, wooded flood plains, with many oxbow lakes along the larger rivers.

Streamflow is usually the highest during the winter and spring seasons which coincides with the usual heavy rainfall. Occasional flooding occurs along the flood-plains of most unregulated streams. Low flows normally occur on the streams in late summer and fall. Storage facilities should be considered on streams where the draft will exceed the low flow. A number of large lakes and reservoirs have been constructed in the State.

Natural quality of surface water is good with most of the water meeting the mineral quality criteria for use in industry. Industrial and municipal pollution is a problem on a number of the streams or certain reaches of the streams. Pollution by pesticides and herbicides is reported in some of the streams and lakes of the agricultural area of northwestern Mississippi. Remedial practices are currently proposed to correct some of the pollution problems in the streams.

Large industrial development will probably continue to depend on surface water supplies while most domestic, municipal and small industrial development will continue to use ground water.

WATER IN MISSISSIPPI

Mississippi has an abundance of ground and surface water available for municipal, industrial and agricultural use. Mississippi is considered water-rich because of the rainfall and favorable geologic conditions which are present in the State. Too much water or not enough water is a common complaint during certain seasons of the year. Mississippi has an average annual rainfall of above 53 inches, but most of this comes in the winter and spring months. Aquifers, any formations, beds, or zones which contain, transmit and yield water readily to wells, underlie practically the entire State. At particular areas of need thick aquifers may be missing or may contain water that is poor in quality. Wells that furnish a dependable water supply may be completed in most aquifers fairly inexpensively by water well contractors.

The high average rainfall within the State completely fills the aquifers and the rejected rainfall flows to the sea in the form of surface water (fig. 1). Several large river systems are scattered throughout the State. Surface and ground water are related, as ground water furnishes most of the water to the streams during times of drought and streams in turn supply water to aquifers.

WATER USE

The majority of water used in Mississippi is by industry and the public. Total water use in Mississippi in 1965 was estimated to be 2,030 mgd (million gallons per day). This use represents only a fraction of the total amount of ground and surface water available. The Mississippi River, which forms the western boundary of the State, discharges an average of 360 bgd (billion gallons per day) into the Gulf of Mexico. Numerous aquifers capable of yielding 2,000 gpm (gallons per minute) or more to wells are found in almost three-fourths of the counties. Mississippi's most plentiful and important natural resource is water.

All municipal water supplies, with the exception of three, Jackson, Columbus and Meridian, are from ground water sources. A large percentage of industrial cooling water is from surface water sources. Several large steam generating plants are in

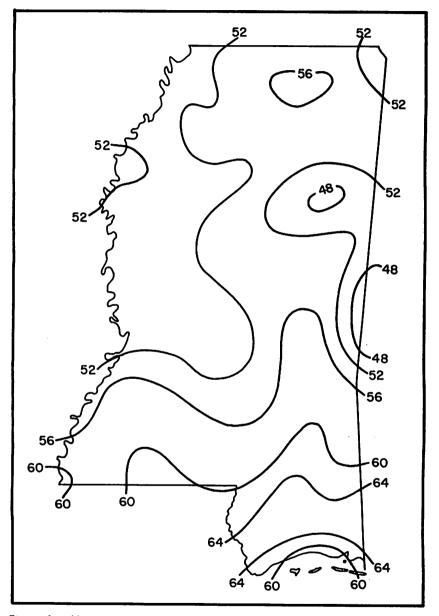


Figure 1.—Mean annual precipitation, in inches. Extracted from U. S. Weather Bureau, 1959, "Climates of the States." Based on 25 year period 1931-55.

.

operation in the State which use large volumes of surface water and some ground water. In 1965 it was estimated that these plants used 730 mgd of water in generating electrical current for use in the State. Quality requirement for this type of use for surface water is usually lower than for most other industrial uses. One large generating plant in Harrison County uses saline water in its operation.

MISSISSIPPI CONTROLS ON WATER

State agencies have been set up by the Mississippi Legislature to control pollution, allocate surface water, safeguard public drinking supplies, investigate the availability of water, and license water well drillers. Some of the general responsibilities of the various State agencies in regard to water are listed below.

The Board of Water Commissioners is empowered to allocate surface water based on certain rules and regulations established by law. A primary function of this agency is to protect the present surface water user and control the future appropriation of water to insure its most advantageous use. A permit from the Board of Water Commissioners is required before water can be withdrawn from a stream, watercourse or lake. The Board also licenses water well contractors which operate within the State. Water well contractors are required by law to file a drillers log on each completed water well with the Board of Water Commissioners within 30 days from date drilled.

The Mississippi Air and Water Pollution Control Commission (1966) has the authority to control pollution in the surface streams. The Commission has classified most streams and reaches of streams as to priority use. Regulations have been adopted which require a permit to construct or operate a facility that discharges waste material in any stream in Mississippi.

The State Oil and Gas Board is concerned with the promotion, development, and utilization of the oil and gas resources in the State. The Air and Water Pollution Control Commission has delegated to the State Oil and Gas Board the responsibility of protecting the fresh-water aquifers from salt-water pollution by the petroleum industry. The State Oil and Gas Board issues permits for the construction of salt-water disposal wells in the petroleum industry. The Mississippi State Board of Health is responsible for the safety of public water supplies in the State. Public water supplies have to meet certain laboratory standards of purity before the water may be used or sold. Numerous well owners submit water for purity and chemical tests to this agency. The Mississippi State Board of Health collects regular bacteriological analyses of public water supplies and maintains a file of chemical analyses on most public water supplies within the State.

The Mississippi State Game and Fish Commission is responsible for the protection of aquatic life in the streams. Their responsibility includes the propagation of fish and aquatic life and wildlife. Recreation and related activities are an important economic resource, and the Commission is interested in providing fishing and recreational opportunities throughout the State.

The Mississippi Geological Survey is basically a research organization. The Survey is instructed by law to examine the mineral natural resources, including the metalliferous deposits, petroleum, natural gas, as well as building stones, clays, coals, cements, waters, and all other mineral substances of value. The Survey's water responsibility includes the investigation, mapping and compilation of reports on the water supplies and water power of the State with reference to their application to irrigation, protection from overflow and other purposes. The end product of most investigations or studies is a report or bulletin which sets forth the findings of the Survey.

The various state agencies cooperate in determining the most beneficial use and protection of the water resources of the State. The agencies involved realize that the well being and growth of the State depends on how well we manage this important resource.

FRESH WATER IN MISSISSIPPI

The base of fresh water varies from about sea level to more than 3,000 feet below sea level in the central section of the State (fig. 2). The map was prepared from previously published maps (Cushing and Newcome) which were based on information from electrical logs of oil and gas test wells. The varying depths of fresh water across the State may be attributed to the absence of certain aquifers or containers or the degree of aquifer-flushing of the trapped brackish connate water. Fresh water is defined as water with less than 1,000 ppm (parts per million) total dissolved solids. Concentrations of certain minerals in water may render it unsuitable for particular uses. The Mississippi State Board of Health recommends that water containing more than 250 ppm chloride not be used for drinking water. Usually the water containing high total dissolved solids contains sodium chloride or salt, bicarbonate and other minerals. Water containing slightly high total dissolved solids may be utilized for certain industrial uses. Treatment of brackish or slightly saline water will probably become economical if water treatment technology continues to develop.

RURAL WATER SYSTEMS IN MISSISSIPPI

Numerous rural water systems are being or have been installed throughout most areas in Mississippi. These systems use ground-water for their source of water either by drilling wells or purchasing water from an existing municipal supply. The Farmers Home Administration approves loans to groups or small towns once a need is proven and money is available. There are 431 completed rural water systems in the State as of March, 1970. An additional 30 to 40 systems have been approved and are in some stage of construction.

The Farmers Home Administration encourages communities and small towns to band together and form an association or district and incorporate as such. The association or district then constructs a water system including a well or wells with a distribution system and a water-treatment plant if necessary. The government insures the loan which is usually amortized over a 40-year period.

GROUND WATER

INTRODUCTION

Large quantities of fresh ground water are available at relatively shallow depths throughout most of Mississippi. Municipal, industrial, irrigation and domestic water supplies are from ground water sources. A relatively new demand is for supplying numerous commercial catfish producers across the State. Industrial development continues to demand greater quantities of water for various manufacturing plants and paper mills.

MISSISSIPPI GEOLOGICAL SURVEY

Large volumes of ground water may be pumped out of the ground at a relatively small investment when considering the dependability and average life of a well. Industrial and municipal wells have been known to last up to 50 years although the average life probably is 15 to 18 years. The temperature of ground water remains constant which is beneficial for cooling, industrial and municipal use. Quality of ground water is generally good, and when poor quality water is encountered only minor treatment is required.

The abundance and availability of ground and surface water will continue to be helpful in promoting the industrial growth of Mississippi.

GROUND WATER

OCCURRENCE

Ground water is the most widely used natural resource in Mississippi. Ground water is defined as any water found beneath the surface of the ground that is in the zone of saturation. The zone of saturation is that portion of the earth's upper crust in which pores, joints and openings are filled with water. The ground water zone is generally referred to as that portion of the earth which contains fresh water or marginal fresh water. Ground water may seep out onto the surface and become surface water and vice versa. Both ground water and surface water are interrelated and a basic understanding of each will be helpful in a study of either resource. Ground water and surface water are ultimately dependent on precipitation. Precipitation effect on ground water is slow, whereas surface water is affected in a short time by a lack or excess of precipitation.

Ground water reservoirs or containers are commonly called aquifers. An aquifer is any water-bearing unit that contains, transmits, or readily yields water to wells. The three main functions of an aquifer are to filter, transmit and store water. Water is filtered as it passes into the intake of the aquifer which is usually the outcrop area or adjacent permeable beds and through the aquifer material to the point of withdrawal. The water is slowly moving within the aquifer at the rate of a few feet per year from the intake or recharge area until it is discharged at wells, springs, seeps or other aquifers which represent an underground pipeline. The aquifer acts as a large underground

18

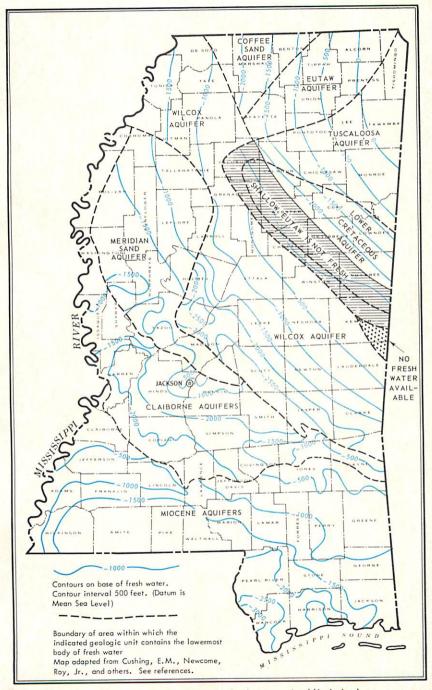
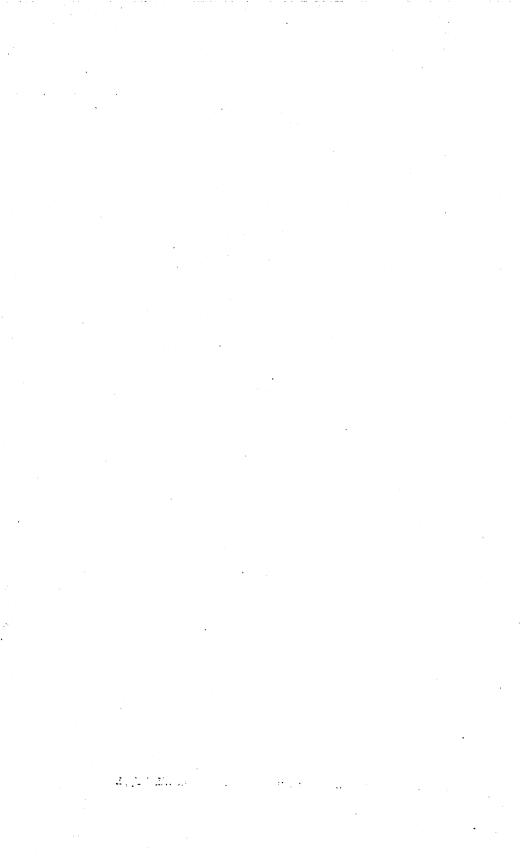
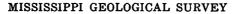



Figure 2.-Configuration of the base of fresh-water in Mississippi.


reservoir by storing the water until it is discharged or used. Many geologic units have a relatively large capacity to store water, but their pipeline or conduit function is so limited that they cannot transmit water to wells at sufficient rates to be useful. The ease with which water passes through the aquifer material is determined by the shape, size, assortment and degree of compaction of the aquifer material. Figure 3 shows the distribution of the major aquifers in the State.

Generally, aquifers are composed of unconsolidated sand, gravel, and silt or mixtures of these. The Paleozoic aquifers in northeastern Mississippi are composed of sandstone, limestone and chert which are semi-consolidated to consolidated. A number of aquifers near the outcrop are lenticular and are not continuous over a very large area. The lenticular nature of these aquifers reflects the depositional history of the aquifer material.

Water enters the permeable geologic units and moves down the dip in a generally west and southwesterly direction toward areas of discharge. A reversal of this general condition may be present in areas of heavy withdrawal. Water levels are lowered in the aquifers in the vicinity of discharge or withdrawal, and the water levels change the direction of ground-water movement.

Aquifers are classed as water-table or artesian depending on whether the water level is within the aquifer and unconfined or whether it is confined. Water in a water-table well stands at about the same level as in the aquifer outside the well. Water-table aquifers, such as the alluvial aquifer in northwestern Mississippi, receive recharge mainly from local precipitation and streams. This condition results in a seasonal fluctuation of the water level. The base flow of streams is supplied in part from the discharge of water-table aquifers. The terrace deposits that cap the hills and the alluvium along the streams are helpful in maintaining the base flow of the streams.

Most of the other aquifers are classed as artesian or semiartesian aquifers. Artesian aquifers are confined by impermeable beds, usually clay, and the water in wells will rise above the top of the water-bearing material. Artesian wells imply flowing wells but this is a mistaken idea according to the above definition. Artesian wells located in the deeper stream valleys, in northwestern Mississippi, and along the coastal counties usually have water levels above the surface and flow.

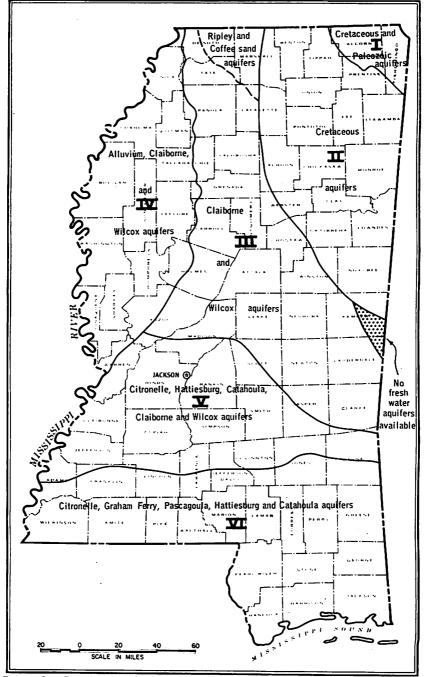


Figure 3.—Distribution of major ground-water aquifers.

20

Water quality changes as the water moves down the dip from the outcrop to areas of discharge. Most shallow water up to 100 feet deep generally has low dissolved solids, low pH (hydrogen ion concentration) and high carbon dioxide (CO_2). Dissolved solids content usually increases down the dip as more mineral matter is dissolved by the water and the type of the water changes from calcium to sodium bicarbonate. The deeper water is usually softer because the calcium and magnesium content, which indicates hardness, has been decreased by ionic exchange for sodium. The pH of the water generally increases in the deeper aquifers and iron concentrations are reduced. Some of the aquifers, such as the Kosciusko aquifer at some locations in central Mississippi and some Miocene aquifers on the Coast, contain colored water at particular locations, but this is usually not a regional problem.

Temperature of ground water remains constant throughout the year. Water from some of the shallow water-table aquifers may vary a few degrees but not so much as surface water. Water of a constant temperature is advantageous for most cooling purposes and industrial uses. The temperature of shallow ground water ranges from about 60° to 65° F. (Fahrenheit). The geothermal gradient increases 1° F. for every 65 to 100 feet of depth. The temperature of the water from about 2000 feet along the Mississippi Coast is 90° to 100° F. To determine accurate water temperature measurements, the water temperature should be measured in a large capacity well that has been pumping a sufficient time for the temperature to equalize in the well.

WATER WELLS

Water wells vary in size, type of material, construction, and depth. Well production varies for reasons which include pump size, casing size, screen size and openings, pump setting, water level and the amount of water that the aquifer is capable of yielding. Well production is generally based on immediate need and provides no more than a hint of the aquifer potential. The full potential of an aquifer is seldom developed, thereby limiting the information on available water from properly constructed wells.

Well yields are in direct relationship to the pump size and horsepower requirements, and depth to water level. The diameter of the casing generally determines the size and yield of the pump. Generally, a well with a 2-inch casing diameter will yield up to 15 gpm, a 4-inch well will yield up to 30-50 gpm, and a 6inch well will yield up to 125-150 gpm. Higher yields are possible from larger wells.

Wells yielding 5,000 gpm have been constructed in northwestern Mississippi and in Hancock County in southern Mississippi. Most municipal and industrial wells are designed to yield from 500 to 1,000 gpm, but individual wells are known to yield up to 2,000 gpm. The rural water system wells are usually smaller than the municipal or industrial wells and yield from 50 to 150 gpm. The irrigation and commercial catfish-farm supply wells in northwestern Mississippi are built to yield several thousand gallons per minute.

Depth of wells varies according to the particular aquifer or aquifers underlying the area. The deepest water well presently in use in the State is reported to be 2,410 feet deep in Calhoun County in northeast Mississippi. Deeper wells may have been drilled but records are not available on these wells.

Water well specifications for one location will not necessarily fit another location. Information on well depths, quality of water, water levels, aquifer thickness, potential yields, and any unusual conditions present are some of the factors to be considered before writing well specifications at a particular site. Test holes which include pumping tests, electrical logs and water sampling should be considered in areas that require detailed information when the information is not available from other sources. The requirement for providing a specified yield is the responsibility of the contractor in most Mississippi water well contracts. There are some locations where an aquifer is not capable of yielding the required amount of water and this type of contract does not seem equitable. A bonus should be given in this type contract for providing more water than is required in the specifications. This would encourage proper development of wells. Proper well development is generally lacking in Mississippi. Once the required yield is reached the well is assumed to be developed. This reflects on the well construction industry as a whole. Only a few well specifications are written with proper well development included.

QUALITY OF WATER

The ground water in Mississippi is of good quality for most purposes (Table 1). At certain locations minor quality problems exist such as excessive color, high iron content (greater than 0.3 ppm), low pH (hydrogen ion concentration) or acidic water and excessive total dissolved solids (Table 2). The quality of ground water reflects contact with minerals within the aquifer material.

The most persistent complaint concerning quality of groundwater throughout Mississippi is low pH and excessive iron. Neither of these problems is unsolvable by minor treatment. Generally, areation with pH adjustment will solve these problems unless concentrations of iron exist in excess of 2 ppm. Organic color in water is a problem in certain aquifers, notably the Kosciusko and Cockfield aguifers at some locations across the central portion of the State, and some of the deeper Miocene aquifers along the Coast. Color originates from organic material and lignite or lignitic material within the aquifer. Large concentrations of organic material, trees, leaves, roots and plants, were buried along with the sand, silt, and clay deposits. Color may be removed from water by treating with alum, but the cost is prohibitive in most cases. Other shallower or deeper aquifers are usually present that can be utilized or another location may be found where the water from the same aquifer is without color.

Water containing total dissolved solids greater than 1000 ppm is present in some of the deep Cretaceous aquifers in northcentral Mississippi. The major constituent in the water is usually sodium chloride or other salts which impart a salty or bitter taste and corrode metal. Removal of excessive dissolved solids by treatment is economically unfeasible at the present time.

Table 1.—Source and significance of common mineral constitutents and physical properties and characteristics of water.

Silica (SiO₂).—Silica, dissolved from practically all rocks, does not affect use of water for domestic purposes. It affects industrial use of water because it contributes to formation of boiler scale and helps cement other scale-forming substances which may cause damage. Water from wells generally contains more silica than water from lakes and streams.

- Iron (Fe).—Iron is dissoved from practically all rocks and soils, and nearly all natural water contains some iron. Water having a low pH tends to be corrosive and may dissolve iron in objectionable quantities from pipes. Iron precipitates on exposure of water to air, forming an insoluble hydrated oxide which causes reddish-brown stains on fixtures and on clothing washed in iron-bearing water. In large amounts iron imparts a taste and makes water unsuitable for manufacture of food, paper, ice, and other products used in food processing. Iron may cause trouble by supporting growth of bacteria, which clog screens and gravel packing around wells. U. S. Public Health Service standards set a limit of 0.3 ppm Fe and 0.05 ppm Mn in water used for interstate carriers. Iron can be removed by aeration, precipitation, and filtration; by precipitation during removed of hardness; or by ion exchange.
- Calcium (Ca) and Magnesium (Mg).—Calcium and magnesium are dissolved mostly from limestone, dolomite, calcareous sand, and gypsum by water containing available hydrogen ions. Calcium and magnesium are the principal cause of hardness of water and contribute to the formation of scale in pipes, boilers, and hot-water heaters and form an objectionable curd with soap.
- Sodium (Na) and potassium (K).—Compounds of sodium and potassium are abundant in nature and are highly soluble in water. Some ground water that is hard may, in passing through rock formations, undergo base exchange and become soft at greater depths.
- Bicarbonate (HCO₃) and carbonate (CO₃).—Bicarbonate and carbonate in natural water result from the action of carbon-dioxide-bearing water on rock materials, principally limestone and dolomite. Carbonate is present in only a few natural waters. Bicarbonate is of little significance in public supplies except where the alkalinity affects the corrosiveness of water.
- Sulfate (SO₄).—Sulfate is dissolved mostly from soils and beds of shale and gypsum. In combination with calcium and magnesium, sulfate contributes in formation of hard scale and affects industrial use of water.
- Chloride (Cl).—Chloride is in nearly all water in varying amounts. The chlorides of calcium, magnesium, sodium, and potasium are readily soluble. Drainage from sewage, salt springs, and oil fields and other industrial wastes may add large amounts of chloride to streams and ground-water reservoirs. Small quantities of chloride have little effect on the use of water. Chloride imparts a salty taste with threshold varying with the individual.
- Fluoride (F).—In nature fluoride occurs in fluorspar, cryolite, and some other minerals. Most natural water contains a little fluoride. U. S. Public Health Service drinking water standards recommend a limit varying from 0.7 to 1.0 ppm in areas having an annual average maximum daily temperature of 70.7 to 79.2 deg. F. According to Dean (1936), fluoride in large amounts may cause mottling of children's

teeth; however, water having about 1 ppm of fluoride may substantially reduce tooth decay in children who have used the water during calcification of their teeth.

- Nitrate (NO₃).—Nitrate in water represents the final oxidation product of organic nitrogen compounds. Its presence may indicate pollution, and in high concentration it may be an indication of sewage or other organic matter. A National Research Council report by Maxcy (1950) concludes that water having a nitrate content in excess of 44 ppm should be regarded as unsafe for infant feeding. It may be a contributing factor to natrate cyanosis ("blue-baby disease") in such unusual amounts.
- Dissolved solids.—Although the residue on evaporation to dryness does not coincide completely with the original material in solution, it is generally used synonymously with dissolved solids. Residue on evaporation includes organic matter and some water of crystallization. Few industrial processes can tolerate water containing an excess of 1,000 ppm dissolved solids.

PHYSICAL PROPERTIES AND CHARACTERISTICS

- Color.—Color refers to the appearance of water that is free of suspended matter. It results from extraction of coloring matter from decaying organic materials such as roots and leaves in bodies of surface water or in the ground. Natural color of 10 units or less usually goes unnoticed and even in larger amounts is harmless in drinking water; however, for many industrial purposes color is objectionable. It may be removed from water by coagulation, settling, and filtration.
- Hydrogen-ion concentration (pH).—The pH is a measure of the activity of hydrogen ions in solution. A pH of 7.0 indicates a neutral solution. Values progressively lower than 7.0 denote increasing acidity, and those above 7.0 denote increasing akalinity. As pH increases, the corrosiveness of water normally decreases, although excessively alkaline water may be corrosive to some metal surfaces. pH has an important bearing on the utility of the water for many industrial purposes.
- Specific conductance (micromhos at 25° C.).—Specific conductance is a measure of the ability of water to conduct an electric current, and it furnishes a rough measure of the mineral content of the water. It gives no indication of the relative quantities of the different constituents in solution. It is useful in making comparisons of the estimated total mineral content of different waters, and of following changes in such content of water in a stream.
- Temperature.—The temperature shown in tables of analyses is in degrees Fahrenheit and represents the temperature of the water at the time of sampling. Most ground-water measurements were made at the well head after sufficient water had been withdrawn to represent the approximate temperature in the formation. Ground water in a given locality is generally of constant temperature. The average temperature

of water at shalow depths generally is about the same as the mean annual air temperature. It increases with depth at the rate of 1° for each 65 to 100 feet.

- Corrosiveness.—A water that attacks metal is said to be corrosive. It frequently results in "red water," caused by precipitation of iron; however, not all red water is the result of corrosion. Water from some formations contains considerable iron in solution, which on being exposed to the air, precipitates readily and gives a red-water effect. Acidic waters are capable of causing corrosion of water pipes and water-heating systems. Preventive measures involve control of these active agents or minimizing their effects, and includes maintaining proper pH of the treated water. Electrolysis control inside steel reservoirs and protective coating on metal surfaces also are used for protection against corrosion. Free carbon dioxide and other gases normally are removed by aeration and, if necessary neutralized by the addition of either lime or soda ash.
- Hardness.—In the development of a water supply hardness is one of the most important single factors to be considered. It is caused principally by the calcium and magnesium in solution and is generally reported as the calcium carbonate equivalent. Carbonate hardness or "temporary hardness' is hardness equivalent to the bicarbonate and carbonate. "Permanent" or noncarbonate hardness is caused by the combination of calcium and magnesium with other ions. Scale caused by carbonate hardness usually is porous and easily removed, but that caused by non-carbonate hardness is hard and difficut to remove. Hardness is usually recognized in water by the increased quantity of soap required to make a permanent ather. As hardness increases, soap consumption rises sharply, and an objectionable curd is formed. Water having a hardness of 60 ppm or less is soft; 61 to 120 ppm is moderately hard; and more than 120 ppm is hard.

Most shallow ground water in Missisippi is acidic in nature. The low pH and excessive concentration of carbon dioxide causes the water to be corrosive to metal in the well and plumbing which results in iron in the water. A large number of the iron problems occur in this way. A common complaint among well owners is that a new well will last only about one year before iron is noticed in the water. This time corresponds to the length of time in which the corrosive water will dissolve the galvinized coating on the casing. The problem may be eliminated by using a corrosive resistant material such as plastic pipe or coating for the casing and plumbing system. A plastic screen is also used in many instances where the ground water is acidic and attacks metal screens. Table 2.—Water-quality tolerance for industrial application.

American Water Works Association, 1950, Water quality and treatment, p. 67, table 3-4. Remarks: A, no corrosiveness, B, no slime formotion; C, conformance to Federal drinking water standards: D, A13,03 less than 8 ppm, 510, less than 5 ppm. Chemical constituents parts per million.

Remarks ຊັບ Juitormity of composition and temperature desirable. Iron objectionable since cellulase absorbs iron from dilute solutions. Manganese very Clear, adorless, sterile water for syrup and carbonation. Wotor consistent in character. Most high-quality filtered municipal water not 3000-1000 2500-500 1500-100 lotal Ids 8 : : :888 : : : : Control of corrosion is necessary as is also control of organisms, such as sulfur and iron bacteria, which tend to form slimes. Ga(HCO3) particularly traublesome. Mg(HCO3)2 tends to greenish cafar. CO2 assists to prevent cracking. Sulfates and 7.8-8.3 8.0 :: ÷ ÷ ÷ ÷ :::: Ŧ thard candy requires pH of 7.0 or greater, as low value forors inversion of sucrose, cousing sticky product. Alka-linity ::s::s::s:: : : : : : •••• 3 : 5 :::: Hord-5-75 250 50 50 8 22 -03 20-135 8 **** :E ۳ ۳ ۳ 8888 Waters with algoe and hydrogen sulfide odors are most unsultable for air conditioning. 5.5 :223 şξ ÷ ÷ ÷ 5.5.5 892 chlorides of Ca, Mg, Na should each be less than 300 ppm (white butts). 2202 ň 22 : : : 3.2.8.8 832 ::: 62200220 Ľ 0.10 5.5.8 2223 0-100 Color :2 8955 ~ 2 2 8 2 2 2 3 urbidity 22 ~ : 8º : ~ 8255 s ? ۵ : ^ :2 ° 2 3 satisfactory for beverages. Some hardness desirable. -ight paper, HL-grode Mastics, clear, uncolored Carbonated beverages 3/ Dyeing Wood scouring <u>10/</u> ayon (viscose) pulp: Cooling <u>5/</u> Ice (row water) <u>6</u>/ ada and sulfite Air conditioning \underline{l}' 50 psi and up Cotton bandage Industrial Use oper and pulp 7/ Groundwood Manufacture (raft pulp Production 0-150 150-250 Confectionery Legumes General General Boiler feed: aundering coning 8/ Canning: **Fextiles:** Boking ાઇનઅર્લ できん 161616 16

WATER RESOURCES OF MISSISSIPPI

WASTE DISPOSAL IN DEEP WELLS

Presently numerous salt-water disposal wells are in use, particularly in southern Mississippi. Most of these wells are located at or near oil fields or salt domes used for storage purposes. These wells should be completed in deep aquifers below the fresh-water zone.

Industrial waste-disposal wells will probably be constructed in the near future. Deep saline aquifers offer a great potential for the proper disposal of industrial wastes. Care should be ex-

excessive iron, monganese, or turbidity croates spots and discoloration in tanning of hides and leather goods. mognosium, iron, monganese, suspended matter, and soluble organic matter may be objectionable.

Constant compositiony residual alumina less than 0.5 ppm.

Calcium,

bjectionable, clogs pipelines and is axidized to parmangarates by chlorine, causing reddish color.

MISSISSIPPI GEOLOGICAL SURVEY

ercised in the planning and constructing of either type well because of the danger of polluting the fresh ground-water aquifers. The Air and Water Pollution Control Commission must approve the plans and application before any type of industrial disposal well is constructed within the State. Detailed construction plans should be included in any application. The Oil and Gas Board must approve the plans and application for any salt-water disposal well in the State.

WATER-BEARING UNITS

Geologic and hydrologic conditions and quality of ground water varies throughout the State. The State is divided into six areas (fig. 4) for the ground water discussion. In each area a summary is given on the general ground-water and quality of water present, a table is given listing the major aquifers and the water resources of each unit present, and tables are included with selected wells and available chemical analyses of ground water. Maps are included showing location of water wells and the Mississippi Survey's Groundwater number (MSG). Information previously published on wells was not generally included in this report. References listing the major publications on ground water in the State are listed at the end of the report.

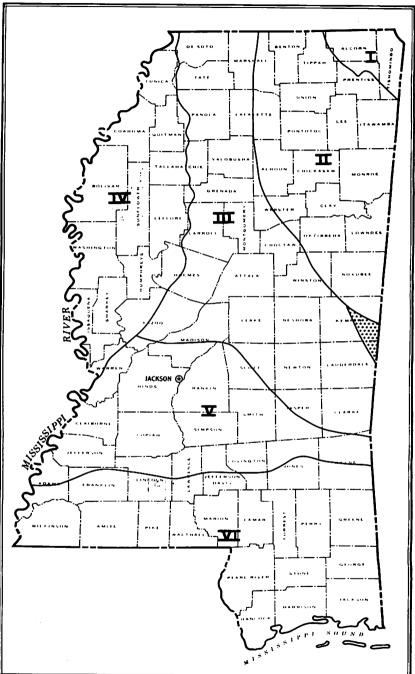
GROUND-WATER

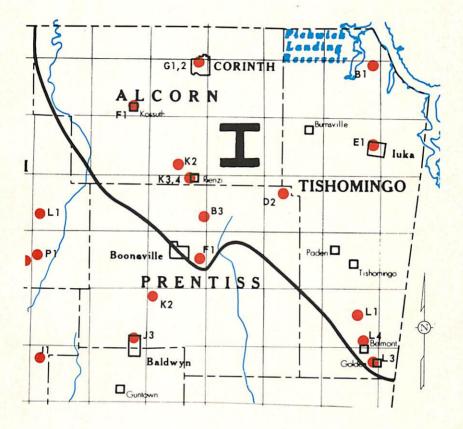
AREA I

Northeast Mississippi (Area I, fig. 5) is not generally a good area for large ground-water development. The aquifers are listed in Table 3 which gives a summary of their water-bearing characteristics. Aquifers underlie the area but are not as continuous or permeable over a large area as in other sections of the State. Primary aquifers in northeast Mississippi include the Paleozoic, sometimes referred to as Paleozoic chert, and Upper Cretaceous deposits. The Cretaceous deposits overlie the Paleozoic rocks but are thin over a large portion of the area. The Cretaceous deposits are missing in northeastern Tishomingo County where the Paleozoic rocks are on the surface.

The general dip of the beds is west and the strike is in a north-south direction. The dip ranges up to 30-40 feet per mile for

28




Figure 4.—Major ground-water divisions of the State for this report.

	e si		s wells ater has		ielding has a				supplies are com- fer are of the nineral-
WATER RESOURCES	Generally not an aquifer. Supplies some domestic wells along the streams. The alluvium is probably thicker in the flood plain of the Tennessee River.	Not an important aquifer. A few wells in the area may utilize this aquifer. A thick deposit of sand and gravel caps the hills parallel to the Tennesse River. Most of theso deposits are not potential aquifers because they are present at high elevations only.	Not an important aquifer. The aquifer is the source of water supply for shallow domestic wells in the western part of Alcorn County. Quality of water is fair from this aquifer. The water has a low pH and iron content may be high.	Not an aquifer.	A source of supply for shallow domestic wells in Alcorn and Prentiss Counties. Higher yielding wells may be possible at certain locations. Water quality is generally poor. The water has a low pH and contains excessive iron concentration at a number of locations.	An important oquifer in most of Tishomingo and all of Alcorn and Prentits Counties. Numerous shallow domestic, industrial and municipal walls are completed in the Futew counter in this area. Quality of water is associally fair. The water usually has	a low pH and iron content may be a problem.	A transitional type deposit between the underlying Paleozoic rocks and the overlying Eulow deposits. A large number of wells completed in the base of the Eulow may be considered to be in the truscoloosa provided the quivier costists of coarse and gravel. A number of rural water supply wells in the southern part of the area are proveding from the Turceloosa quifter. Quality of water is fair to poor from this provider. Iron content and low PM are the major sublems associated with thits water.	An important acuifer in Alcorn, northern Prentiss and Tishcaningo counties. This aquifer supplies the municipal water for Corinth and luka. Other public, industrial and domestic wells are com- pleted in this aquifer in Alcorn and northern Tishcaningo counties. Tailed from this aquifer are up to 900 gpm in the vicinity of Corinth. Quality of water is generally good. The PH of the water is 7 or obsore and the inconcentent it usually low. The hardness
THICKNESS (feet)	0-20	00 1:-0		0-500 t					1 000 t
STRATIGRAPHIC UNIT	Alluvium	Terrace Deposits	Ripley	Demopolis chalk	Coffee send	Tombigbee sand	Lower	Tuscaloosa	Undifferentiated Rocks
GROUP				Selma					
SERIES	Holocene	elesolisiele				-			
SYSTEM				Cretaceous				anian, anian, aniqqississis, and anian/ysnna	
ERA		⊃iozœ9∰						piozosic	

Table 3.—Stratigraphic column and water resources in Area 1.

30

MISSISSIPPI GEOLOGICAL SURVEY

EXPLANATION

Figure 5.—Location of selected wells in Area I.

most of these deposits. Local variations may occur and the beds may dip steeply.

PALEOZOIC AQUIFERS

The Paleozoic rocks are exposed at the surface in the vicinity of Pickwick Lake on the Tennessee River and are the oldest rocks exposed in the State. The Paleozoic rocks usually are not good aquifers and typically consist of dense, hard, consolidated limestone or sandstone which has very little permeability. The top of the Paleozoic rock in the subsurface throughout most of the area is distinguished by a weathered chert zone. This weathered Paleozoic chert marks the unconformable contact between the Paleozoic rocks and the overlying Cretaceous beds. The chert is deeply weathered with fractures and fissures at some locations and resembles a chert-gravel deposit. The weathered chert is an important aquifer and a potentially important aquifer throughout parts of Tishomingo, Alcorn and northern Prentiss Counties. The aquifer will yield large volumes of water to wells where permeability has been sufficiently developed in this zone. The permeability is low at some locations and faulting is associated with the unit in the vicinity of Corinth.

Depth of the Paleozoic aquifer is relatively shallow throughout most of northeast Mississippi. The weathered chert occurs from a depth of 160 feet in section 1, Township 2 South, Range 10 East in Tishomingo County to about 450 feet deep at Corinth in Alcorn County, with thicknesses varying from 20 feet to about 100 feet.

Large capacity wells, up to 900 gpm, have been completed in the weathered chert at Corinth and rural water association wells yielding 100-150 gpm are developed in this aquifer in northern Tishomingo County (Table 4 and fig. 5). A well for the Town of Iuka, (E 1), 366 feet deep was completed in 1965 in the Paleozoic aquifer and pumped 750 gpm. This is very unusual to have a high yield from this depth in the Paleozoic rocks other than in the weathered chert zone. Prediction of well yields is difficult because of the varying conditions which resulted in high or low permeability in this unit. Test drilling along with pumping tests should be used to determine the quantity of water available at specific locations from this aquifer.

Table 4.—Records of selected wells in Area 1.

Well No.: Murbers correspond to those on well-location maps, chemical-analysis tables, and purpling test tables.

Majority of wells are rotary drilled.

Water Level: N. Measured; R. Peported.

tso of Wallt 'D, Denesice 1, Industrial, IR, Irrightion N, Neme: O, Cteanration: P, Public Supply: 5, Stock T, Tett. Remarks. C, Commical Acalysis: 0, Cteanration Soll:

zlevation: Elevations datamined mathy iter topographic maps having contour intervals of 10 or 25 feet.

The first many firs							Nator	Ievel				
Amount Matter from the particulation of the partitetee partitetee particulation of the particulation of the particu					an jaru	Elev. of land	Above (+) or holow			vield		
Alcorn county Kossuth High School 1961 F 88 1961 City of Corinth, Well No. 11 1967 42 6 435 91 1961 F 88 1961 City of Corinth, Well No. 11 1967 42 12 445 123 1967 F 700 1967 1 City of Corinth, Well No. 11 1967 42 12 445 123 1967 F 700 1967 1 State Highway Department, 1968 240 4 450 70 1968 7 10 1968 Reactification 1968 200 10 4 130 145 1970 7 1970 Reactificater Association 1968 370 10 445 132 1968 7 1968 Reactificater Association 1968 370 10 445 132 1968 7 1968 Reactificater Association 1968 240	= :	Amer	Year Prilled		Diameter (in.)			Dato of Measurement	L'sc	Gallons por Mante	Date	Remarks
Kossuch High School 1961 P 88 1961 P 88 1961 City of Corinth, Well No. 11 1967 42 12 445 123 1967 P 750 1967 1 City of Corinth, Well No. 11 1967 500 12 445 123 1967 P 700 1967 1 City of Corinth, Well No. 11 1968 240 4 450 70 1967 P 700 1967 1 React Highway Department, 1968 240 4 450 70 1968 1						Alcorn (County					
City of Corinth, Well No. 11 1967 445 123 1967 7 750 1967 1 City of Corinth, Well No. 10 1967 500 12 480 145 1967 7 700 1967 1 State Highway Bepartment. 1968 240 4 450 70 1968 7 10 1968 State Highway Bepartment. 1968 240 4 450 70 1968 700 1967 1970 1970 1968 1968 1968 1968 1968 1968 1968 1968 1968 1968 1968	-	Kossuth High School	1961	442	9	485	16	1961	ρ.	88	1961	
Ctry of Cartuth, Well No. 10 1967 500 12 480 145 1967 P 700 1967 P 10 1968 Readstde Park P 10 1968 70 1968 70 1968 70 1968 70 1968 1970 P 145 1970 1968 1969 400 8 480 126 1969 70 1968 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 1969 <td>-</td> <td>City of Corinth, Well No. 1</td> <td>11 1967</td> <td>492</td> <td>12</td> <td>445</td> <td>123</td> <td>1961</td> <td>Р</td> <td>750</td> <td>1967</td> <td>Paleozoic aquifer</td>	-	City of Corinth, Well No. 1	11 1967	492	12	445	123	1961	Р	750	1967	Paleozoic aquifer
State Highway Department, 1968 240 4 450 70 1968 7 10 1968 Roadside Park Rienzi Hater Association, 1969 400 8 480 126 1970 7 145 1970 Rienzi Hater Association, 1969 370 10 445 132 1968 7 156 1970 Rienzi Hater Association, 1968 370 10 445 132 1968 7 150 1968 Rienzi Hater Association, 1968 370 10 445 132 1968 7 1968 1968 Keu Candler Water Assoc. 1968 460 8 540 196 166 1969 7 1968 Holcut-Catro Water Assoc. 1969 305 8 540 146 1969 7 1969 7 1969 Big "V" Hater Assoc. 1969 372 4 540 1966 7 1969 1969		City of Corinth, Well No. 1	10 1967	500	12	480	145	1967	¢,	200	1967	Paleozoic oquifer
Riemzi Water Association, 1969 400 8 480 126 1970 P 145 1970 Weil No. 2 Weil No. 2 1968 370 10 X45 132 1968 7 1968 Riemzi Water Association, 1968 370 10 X45 132 1968 7 1968 Riemzi Water Association, 1968 460 8 540 190 1968 7 130 1968 New Candler Water Assoc. 1969 305 8 530 146 1969 7 1969 Big "V" Water Assoc. 1969 303 8 532 201 1966 7 1969 Big "V" Water Assoc. 1969 303 8 532 201 1966 7 1969 Big "V" Water Assoc. 1969 230 4 540 7 1969 7 1969		State Highway Department, Roadside Park		240	4	450	70	1968	F 4	10	1968	
Rienzi Vater Association, 1968 370 10 \u00e45 132 1968 150 1968 Veill No. 1 1968 1968 196 1968 19 1968 19 1968 1968 19 1968 19 1968 19 1968 19 1968 19 1968 19 1968 18 10 1968 18 10 1968 18 10 1968 18 10 1968 18 10 1969 18 10 1969 18 10 1969 18 10 1969 19	e	Rienzi Water Association, Well No. 2	1969		°C	480	126	1970	4	145	1970	
Prentia County New Candler Water Assoc. 1968 460 8 540 190 1968 7 130 1968 Holeut-Cairo Water Assoc. 1969 305 8 590 146 1969 7 250 1969 Big "V" Water Assoc. 1966 503 8 532 201 1966 P 220 1966 Big "V" Water Assoc. 1969 372 4 540 7 1966 P 220 1966	4	Rienzk Water Association, Well No. 1	1968	370.	10	445	201	1968	4	150	1968	
New Candler Water Assoc. 1968 460 8 540 190 1968 7 130 1968 Holeut-Cairo Water Assoc. 1969 305 8 590 146 1969 7 250 1969 Big "V" Water Assoc. 1966 503 8 532 201 1966 7 220 1966 Big "V" Water Assoc. 1969 372 4 540 7 1966 7 1966						Prentiss	County					
Holcuc-Cairo Water Assoc. 1969 305 8 590 146 1969 P 250 1969 Big "W" Water Assoc. 1966 503 8 532 201 1966 P 220 1966 Big "W" Water Assoc. 1969 4 540 7 1966 P 220 1966 Big "W" Water Assoc. 1969 4 540 7 1969 P 220 1966 Big "W" Water Assoc. 1969 4 540 7 1969 P 1969	Ē	New Candler Water Assoc.	1968	460	8	540	190	1968	F 4	130	1968	
1 Big "W" Mater Assoc. 1966 503 8 532 201 1966 P 220 2 Big "W" Water Assoc. 1969, 472 4 540 T 15	. 0	Holcut-Cairo Water Assoc.	1969	305	8	590	146	1969	р	250	1969	Tuscaloosa aquifer
1969, 1725, 4 540 T 15		Big "V" Water Assoc.	1966	503	ø.	532	201	1966	p.	220	1966	
		BLg "IV" Water Assoc.	1969		4	. 540			н _.	15	1969	

MISSISSIPPI GEOLOGICAL SURVEY

J

. . .

•

•

..:

I.—(Continue
Area
2.
wells
selected
ę
4Records
Table

ed)

	ł	er	er				
Remarks		1968 Paleozoic aquifer	1965 Paleozoic aquifer				
Date		1968	1965	1967	1968	1965	1969
Yield Gallons per Minute		200	750	100	65	80	100
Č.		4	e.	д	P4	ę.,	ρ.
Water Level Above (:) or below land wurdsc Date of (f1,) Muosurement		1968	1965	1967	1968		1969
Vale Above (:) or below land surface (ft.) M	County	152	74	80	8		45
Elev. of tand surfaca datum (ft.)	Tishomingo County	620	580	600	600	556	580
Casing Diameter (in.)	Η	æ	12	10	10	10	10
Depth (ft.)		290	366	151	159	115	130
Ycar Drilled		1968	1965	1967	1968	1965	1969
Owner		Short-Coleman Utility Dist.	Town of Iuka	Dennis Water Association	Dennis Water Association	Golden Water Association	Town of Belmont
Well No.		B 1	ы Н	1 1	L 2	L 3	L 4

WATER RESOURCES OF MISSISSIPPI

33

...

MISSISSIPPI GEOLOGICAL SURVEY

Water levels of the Paleozoic aquifer range from 35 feet to 150 feet below land surface depending on elevation and amount of pumpage in the area. The water is under artesian pressure, but no flowing wells are reported because of the elevation of the land surface. A slight depression in the water level is present at Corinth due to the large withdrawal of water from the Paleozoic aquifer.

CRETACEOUS AQUIFERS

Cretaceous deposits are exposed on the surface to the west and south of the Paleozoic rocks. Cretaceous beds in this area are relatively thin and are deposited on the Paleozoic rocks. Cretaceous deposits are generally unconsolidated and consist of sand, silt, clay, gravel, chalk and mixtures of these sediments.

Thickness of the Cretaceous deposits increases toward the south and west as the depth of the Paleozoic rocks increases. The beds range from the surface to about 500 feet deep in the western and southern part of the area. Aquifers of Cretaceous age include the Tuscaloosa, Eutaw, Coffee sand, and the Ripley (including the McNairy sand member). Chalk members are present but are not aquifers.

The Eutaw aquifer is important in the western and southern part of Area I. Municipal, industrial and domestic wells utilize the Cretaceous aquifers throughout the southern and western section of the area. Large capacity wells completed in the Eutaw aquifer are possible, but most wells are for domestic use with small yields. The Eutaw is recognizable in the subsurface in central and western Alcorn and Prentiss Counties. Tuscaloosa deposits may be present in the zone immediately above the Paleozoic rocks in the southern and western part of Area I. The Tuscaloosa is usually coarser and probably is only 50 feet thick at the maximum in northern Prentiss, southern Alcorn and southern Tishomingo Counties.

The Coffee Sand and Ripley (McNairy sand) occur at high elevations throughout much of the area. Numerous domestic wells are completed in these aquifers. Wells yielding 100-200 gpm may be constructed in these aquifers at certain locations, provided the aquifers are coarse and thick enough to yield large amounts of water.

Water levels for wells in the Cretaceous aquifers are from flowing wells 2 to 5 feet above land surface to nearly 200 feet below land surface. The general elevation in northeast Mississippi is from 420 to 806 feet.

QUALITY OF WATER

Most of the ground-water in extreme northeast Mississippi is of good quality for general use (Table 5). Some constituents may require removal by treatment before the water is used for a specific purpose. Iron content is slightly higher in the Cretaceous aquifers than in the underlying Paleozoic aquifer.

Water from the Paleozoic aquifer is alkaline or neutral (pH-7), fairly hard water (60 to 120 ppm) and moderately mineralized. Iron concentrations are generally low in this aquifer. Chloride concentrations in water from some wells are from 70 to 125 ppm, which is slightly high.

The shallow Cretaceous aquifers usually contain water that has a low pH (acidic) to moderate pH depending on location, aquifer, and depth. Mineralization is low and iron concentration is usually not a problem except for the Coffee sand, Ripley (including McNairy) and the Tuscaloosa aquifers. Water from the Ripley has a low pH and contains a high iron concentration at most locations. A rural water supply well for Holcut-Cario (D 2, MSG) in Prentiss County was completed in the Tuscaloosa aquifer and had an iron concentration of 20 ppm.

Water treatment for low pH or high iron content is fairly inexpensive and simple. Standard treatment includes aeration and pH adjustment with lime. Iron removal equipment would have to be used on concentrations of above 2 or 3 ppm.

GROUND WATER

AREA II

Northeast Mississippi is underlain by several important aquifers of the Cretaceous system (fig. 6). Large quantities of water are available from the thick permeable aquifers which underlie this area (Table 6). This area is one of the largest ground-water provinces in Mississippi as it includes parts of twenty counties.

1.1

		(unici)																	
Ś	Temperature (3°F	leal th	65	65		62		63	62	19	64	64		61	19	62	62	19	
•	Hd	ard of H	7.8	7.8	7.6	7.8		7.8	6.3	6.4	1.1	1.1		5.3	5.4	5.3	5.2	5.2	
	as CaCO3 Total Hardness	State Bo	96	06	150	133		144	26	78	124	140		6	80	7	6	12	
_	loteT bovlezziQ sbile2	$\gamma^{ m Aralyses}$ by Mississippi State Bourd of Health ($ m Warmle \gamma$	337.92	329.90		157.76		185.63						12.96	35.22	11.60	14.73	43.95	
	(F) (F)	lyses by	0.6	. 6		0		•				0		0	0	0	0	.2	-
-	Chloride ICI 1	Ara	125	123	s	0		9	e	4	Q	9		7	7	3	e	20	um as Ni
-	(tOS) statled		13.17	11.73		16.29		20.25						0	0	0	0		*Sodium and Potassium as Na
	(%) muîzzolo9	斑				2.50	County						County	2.75		.25	2.0		Sodium an
wells in Area I.	(or≬ muibo2	Alcorn County	97.55*	95.57*		8.69	Prentiss County	15.50*					Tishomingo County	0	1.77*	1.20	1.2	11.15*	£.
wells	(:://) muisəngoM		7.53	7.53		8.99		1.17					ы	1.21	1.02	.48	.73		
ter from	(a) muisla)		23.64	23.64		38.46		44.87						1.60	1.52	2.0	2.40	4.80	
s of wa	(ə-īj navl	0.75		.2		.25			20	, a	1.0	6.		c	,	: -		Trace	
inalyse	Silice (SiO ₂)	1	3.2	1.2		0		2.4						c		9.0 1			
Chemical analyses of water from	ətəC bəzyloriA	1 92.0-1	4-79-68	4-29-68	12-3-69	11-24-69		9-26-68	7-15-69		7-0-68	696	1	03-6-11	59-21-3	C0-/T-D	09-07-11	19-16 2	10-07-0
ي. ا	Depth		744 707	1005	007	370		760	205		0.52 603	505 472		000	775	151		<u>, , , , , , , , , , , , , , , , , , , </u>	11
Table	•∘n II∍w] ;	 	 				۲ ۵			D 7	F 2 F 2			 	н . ш .	 		r 1

MISSISSIPPI GEOLOGICAL SURVEY

Table 6.—Stratigraphic column and water resources in Area II.

–	- r -		—	_	.			_						
WATER RESOURCES	Not an extensive aquifer. Supplies local domestic wells along some of the major streams.	A local patential aquifer provided the deposit contains sands of sufficient thickness. Some local domestic wells willize this aquifer.	Supplies a few wells in Kemper County, but is generally not an aquifer.	Not an aquifer.	Not an aquifer.	Generally not an aquifer. The Owl Creek may supply a few wells in the northern part of area.	An important aquifer in Tippoh, acstem Benton, and northem Union Counties. The McNairy sand member ranges up to 250 feet thick and is the unit which most of the wells utilize in the Ripley. Quality is good except for hardness.	Not an aquifer.	Vields water to domestic and small municipal and industrial yielding wells in the northern part of the area. A fairly good aquifer in Prentiss, Tippah, Unian, northern Pantotoc, eastern Lafayette, and northwestern Lee Counties. Water quality is poor to fair.	Not an aquifer.	One of the most important and willized aquifers throughout the area. Many municipal, industrial and damestic water wells are completed in this aquifer. Quality of water is good. Water becomes highly minerized in the avuitor and aquifer.	An important aquifer in the southern two-thirds of the area. Many domestic and some public supplies are from this aquifer. Water quality is generally excellent to good from this aquifer.	An important aquifer and source of public and industrial water supplies throughout most of the area. Aquifer is capable of yielding lange volumes of water from the highly permeable aquifer material. The better zones are near the top and bottern of this aquifer. This unit is subdivided into the Garob (Upper), Cokor (Midel) and Massive sand (Lower) by some authors. Quality of water is good. Then accortation may be a problem near the outcose.	A potential source of water supplies in parts of Clay, Calhoun, Oktibbeha, Lowndes, Noxubee and northern Kempor Counties. The avoilability of shallower aquifers and the depth (1,500– 2,000 feet) has limited the development of this aquifer. Quality of water should be good and be similar to the water in the Tuscaloosa aquifer.
THICKNESS (feet)	0-60	0-50	0-150	200-500	30	40	50-450	500	250	0-200	0-200	0-200	500-1500	1000'
STRATIGRAPHIC UNIT	Allwium	Terrace Deposits	Naheola	Parters Creek clay	Clayton	Prairie Bluff chalk and Owl Creek	Ripley	Demopol is chalk	Coffee sand	Mooreville chalk	Fombigbee Band Lower	Me Shan	Tuscaloosa	÷
GROUP				Midway				oellao					Tuscaloosa	
SERIES	Holocene	r pleistocene		Paleocene						łło	ອ			Comanche
SYSTEM	(Guaternary		Tertiary					- \$	noəci	Creto			Lower Cretaceous (Undiffer entiated)
ERA											oiozoreM			

WATER RESOURCES OF MISSISSIPPI

Fresh-water is present in aquifers to a depth of 2,500 feet below sea level in the southern part (fig. 2). The southern and slightly western part (shaded area) is underlain by fresh-water in the depper Tuscaloosa aquifers but the overlying Eutaw aquifer is not fresh. The Eutaw aquifer at Electric Mills in northern Kemper County is not fresh at a depth of 1,388 feet while the deeper aquifer in the lower Tuscaloosa is fresh at a depth of 2,410 feet. This was proven by a test hole (K 2) drilled in 1968 (Table 7).

Table	Table 7.—Records of selected wells in Area II.	ted w	vells i	in Arec	=i						
ä	Well No.1 Numbers correspond to those on well-focation mops, chemical-onalysis tables and pumping test hublets	ell-location si hablese	'ydau t			5	Elevation: Elevations determined mostly from topographic ween having contour intervals of 10 or 20 feet.	ns determir contour inte	wed mostly from th twels of 10 or 20	opographic i feet.	
We No	Majarity of wells are ratary ditiled. Vieter Levels M, Measured: R, Ropatedo					5	Use of Wells D, Domentics II, Industrials IX, Insignition N, Nanes O, Observations P, Natlie Supplys S, Stack T, Testa	mestic: 1, Observat	hourial; R, Non; P, Public S	krigation; upply; S, Slo	ş
						đ	Remarkas C, Chemical Analysis; O, Observation Wells P, Pemping Test.	cel Anelys est.	iig O, Observet	ian Wells	
I					Elev.	Above (·)	Water Level • (·)				
Vell Nee	Owner	Year Drilled	Depth (1.)	Called Diameter (in.)	of land wrface datum (ft.)	or below land (1.)	Dale of Measurement	Ue	Yield Gallons per Minute	Dete	Remarks
				2	Benton County	হা					
81	City of Ashland, Well No. 3	1968	920	10, 6 613	613	214	1968	۵.	8	1968	U
				31	Calhoun County	쳤					
3 2	Serepta Nator Association	1968	1,887	8, 7, 6 450	\$ 450	220	1968	ρ.	150	1968	υ
10	Hourt Confort Nater Association	1966	1,925	10, 6	395	135	1966	۵.	150	1966	U
• a	Town of Bruce	1968	1,850	12	330	128	1960	£.	350	1968	U
21	Paris Contanity Mater Association	1968	1,715	6,3			1968	A	r	1968	U
6 I	Moodonia Oceandry Mater Assoc.	1966	2,040		792	155	1966	4	8	1966	υ
8.4	New Liberty Mater Assoc.	1967	1,830	9 , 4		8	1967	4	160	1967	U
11	Big Creek Water Association	1966	2,410	10, 6	80	60	1967	4	091	1961	U
К 1	Durcon Hill Water Assoc.	1966	1,875	6,3	950	142	1966	۵.	8	1966	U
L 1	Nidwy Nater Association	1966	1,445	£. 3	910	86	1966	۵.	9	1966	U
И 2	Slate Springs Mater Works	1964	2,250	6.4	340	110	1961	•	8	1961	υ
•	Bently-Montevista Mater Assoc.	1968	2,019	10. 8.	10. 8. 6 403	160	3968	•	150	1968	U
				đ	Chickness County	, and the second se					
1.4	Natches Trace Parloay	1%5	116	6,3	8	165	1965	۵.			
c 1	Girl Scouts of America	1968	1,043		460	258	1968	۵.	8	1968	
T 1	bernice thorpson	1%7	660	ŗ	350	160	1968	۵	\$	896T	
L 2	Southeast Nater Assoc.	1969	720	•	310	150	1969	•	200	1969	
1 1	William Gunn	1%1	9 8 1	5	251	65	1967	•	s	1967	
10	Bill Johnson	1967	880	4, 2	56	150	1967	۵	s	1967	

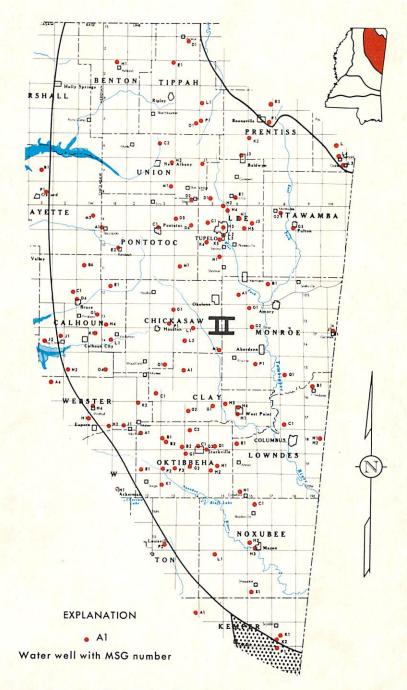


Figure 6.—Location of selected wells in Area II.

					Elev. of !and	Viate Above (•) ar below	Vlater Level e (+) fow				
Viell No.	Outer	Yeor Drilled	Cepti (it.)	Gasing Diameter (in.)	-	land surface (ft.)	and urface Date of (ft.) Measurement	ň	Gallons per Minute	Date	Remort .
					Clav Combo			1			
۸1	Mississippi State Forestry Corrission	1968	569	4	528	320	1968	5	۲	1968	
c 1	Walker's Gin Nater Assoc.	1966	1,120	6, 3	250	120	1966	A.	5	1000	ſ
61	Silom Nater Association	1966	565	6, 4	220	60	1966	-	; ;	1066	, נ
G 2	C. E. Brower	1969	940	3		120	1969	. 0	, r.	1060	U
11	Bryan Brothers Packing Co. Well Yo. 4	1967	105	12	218	106	1967	н	350	1967	ల
КЗ	ione Oak Water Association	1969	381	10	220	96	1970	2	Ĕ	0101	
7	City of West Point	1962	810	8, 6	, 237	28	1962	. 4	65	1962	U
				뀝	Itawarda County	ĸ					
G 2	Torbigbee Water District	1968	344	8	370	66	1968	۵	176	1000	ţ
	Town of Nulton	1969	171	12	295	10	1969		400	9961	U U
				21	Kenper County						
K 1	K crp er County Board of Supervisors	1968	1,348	6, 3		19	1968	I	185	1968	U
X 2	Kerpar County Test Project Farmers Home Administration	1968	2,410	4	190	30	1968	ы	45	1968	U
K 2	Kerpor County Test Project Farmers Hone Administration	1968	1,718	4	190	31	1968	۴	20	1968	U
P 2	Mississippi State Highway Dept. Rost Area # 75	1968	1,515	4	223	19	1968	4	ç	0301	

	Table	7.—Record	Table 7.—Records of selected wells in Area II.—(Continued)	vells in	Area I	I.—(Con	tinued)						
Interviewer (b) Interviewer (b) Interviewer (b) Oracr View Oracr Oracr Oracr View Oracr Oracr Oracr Oracr View Oracr Oracr Oracr Oracr Interviewer Oracr Oracr Servit Law Nature Association Ise Oracr Servit Law Nature Association Ise Oracr Ise Oracr Interviewer Association Ise Oracr Ise Oracr Interviewer Association Ise Ise Oracr Ise Interviewer Association Ise Oracr Ise Oracr Ise Commy Ise Commy Association Ise Oracr													

-Records of selected wells in Area II.—(Continued) r

40

MISSISSIPPI GEOLOGICAL SURVEY

	unie /	liam d	s in Ar		Contin	(pan)					
:				Cesina	Elev. of lond surface	Above (1) Above (1) or below	Vater Level e (1) than		3		
Vell No.	Owner	Year Drilled	Deptis (f.,)	Diemeter (in.)		s	Dute of Measurement	Use	Gallons per Minute	Date	Remarks
B 1	Town of Calcoinia	1965	323	⊷1 ∞	Lowndes County	រុជ ជ	1005	'			
C I	Divie Land and Nator Co., Inc.	1965	620		260	78	5961	4 6	0TT	1965 1865	υ (
	Holly Hills Subdivision			•	•	5	CONT	4	g,	1965	U
1 J	Colden Triangle Vocational Technical Center	1968	615	6, 3	200	20	1968	4	100	1968	
11	East Loandes Water Association Well No. 2	1965	468	10	302	105	1965	G.	350	1965	υ
5 H	East Lowndes Water Association Well No. 1	1965	460	10	301	105	1965	A	350	1965	υ
T N	Crawford Nator Association	1967	1,175	8, 4	320	143	1967	4	131	1967	υ
				হা	Montroe County	24					
ΤV	Wren Water Association	1969	360	8, 4	330	132	1969	4	130	1969	
B 1	Cason Nater Association	1968	325	10, 6	350	140	1968	Α	168	1968	U
G 1	Nren Nater District	1966	348	ø	385	80	1966	£	125	1966	. 0
G 2	Coontail Water Association	1967	270	21	250	20	1967	6	200	1967	U
J J	Gattman Nater Association	1967	124	16, 8	291	19	1967	۵.	110	1967	
T 4	International Nineral and Chemical Corpany	1968	460	4, 2	280	83	1968	н	R	1968	•
T 0	Hanilton Water Association	1968	315	8, 4	230	68	1968	6	169	1968	
				201	Kostubee Country	섥					
c 1	Black Bolt Experiment Station	1966	1,288	8, 4	282	110	1966	6	80	1966	
H 2	Pincy Woods Mater Association	1966	1,785	8, 4	210	5	1967	6 .	80	1967	
с ж	Tom of Micon	1969	1,857	16, 10		22	1970	٩	1235	1970	
L l	Mashulaville Water Association	1968	1,832	8, 4	175	75	1968	с,	150	1968	υ
s I	Naval Air Staion, Auxiliary Field Appu	1968	2,113	8, 6	240	R	1969	٩	60	1970	υ

Table 7.—Records of selected wells in Area II.—(Continued)

WATER RESOURCES OF MISSISSIPPI

Table 7	Table 7Records of selected wells in Area II(Continued)	wells	in Are) : g	Continu	(pər	1	•			
					Elev. of land	Wate Above (1) or below head	<u>Mater Level</u> e (I) lav		Vield		
Yvell No.	Owner	Year Drilled	Depti (ît.)	Diemeter (in.)	(t,)	surface (ft.)	Date of Alcosurement	Use	Gallons per Minute	Date	Remarks
				<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Oktibbela County	ম					
1 4	Double Springs Nater Association 1969	1969	2,150	10, G	200	258	1969	۵.	200	1969	
18	Center Grove Water Association	1965	1,841	6, 3	1 06			n .	20	1965	υ
B 2	Adaton Water Association	1965	1,594	6, 21	290			۵	20	1965	U
В 3	Adaton Water Association	1965	1,645	6, 2%	513	87	1965	e,	100	1965	U
с Г С	City of Starkville	1965	1,521	16, 10	380	174	1965	r.			U
5 C	Trimcane Water Association	1968	1,404	6, 3	230	31	1968	2	65	1965	υ
ומ	Clayton Village Nater Association 1968	m 1968	686	8, 5	263	80	1968	c .	250	1968	
13	Wake Forest Water Association	1967	2,040	œ	508	220	1967	e.	150	1967	υ
F 2	Bradley Water Association	1968	1,696	8	330	132	1969	e.	150	1968	U
£ 3	Iongview Water Association	1963	1,759	10, 4		80	1964	e.	100	1964	U
G 1	Bluefield Water Association	1965	1,468	8, 4	298	76	1965	. .	100	1965	υ
0 1	Talking Warrior Water Assoc.	1968	1,426	8, 4	290	UĞ	1968	r.	150	1968	ບ
6 3	University Heights Corporation	1962	1,310	6, 4	315	114	1964	c.		'n	U.S.G.S. Information
11 1	Sessums Community Nater Assoc.	1965	1,230	8, 4	280	76	1965	£.	150	1965	U
8.2	Ottoc Nater Association	1968	1,234	8, 4	330	137	1968	£4	150	1968	U
	Craig Spring Water Association	1966	1,940	6, 3	330	100	1966	a .	75	1966	υ
	•										

MISSISSIPPI GEOLOGICAL SURVEY

e

11.—(Continued)
h Area
wells in
selected
ę
7.—Records
a

Table	Table 7.—Records of selected wells in Area 11.—(Continued)	ells ir	Area I	l.—(Con	tinued)						
				Casing	Elev. of iand surface	<u>V/otr</u> Above (:) or below lond	1		Yield		
Vell Na.	Owner	Year Drilled	Deptin (f.,))icmeter (in.)	datum ((t.)	surface (ft.)	Date of Maasurement	Use	Gallons per Minute	Dale	Remarks
				Hon	Pontotoc County	м					
A 1	Toccopola Water Association	1964	1,575	10, 6	400	140	1964	р.	150	1964	
C 1	City of Pontotoc	1967	1,188	12, 8	480	330	1968	e .	500	1968	U
D 2	Town of Sherman	1968	850	10	390	155	1968	£.,	200	1968	U
D 3	East Pontotoc Water Association	1969	1,030	8	201	301	1969	ዱ	200	1969	υ
D 4	East Pontotoc Water Association	1969	826	8	400	301	1969	۵.	200	1969	υ
E 2	Randolph Water District	1966	1,565	8, 4	531	310	1966	e.	128	1966	υ
ТК	Troy Water Association	1968	1,060	8, 4	490	293	1968	д,	120	8961	υ
				Pre	Prentiss County	×					
J 3	city of Baldwyn Well No. 3	1965	420	10, 6	350	48	1965	۵.	240	1965	υ
К 2	wheeler-Frankstown Water Assoc.	1966	442	10, 6	370	48	1966	£4	220	1966	U
					Tippah County						
D 1	Ciulybeate Water System Assoc. Nell No. 1	1966	198	80	540	180	1966	ς,	125	1966	υ
Е 1	Town of Faulkner, Nell No. 1	1964	1,120	8, 6	465	120	1964	۵.	250	1964	Ų
L 1	Mitchell Water Association	1968	671	83	629	285	1968	ρ,	100	1968	υ
01	Dumas-Pincgrove Mater Assoc.	1968	940	80	660	315	1968	а,	150	1968	υ
P 1	Duma-Pinegrove Nater Assoc.	1968	069	4	680		1968	e.	õ	1968	υ

WATER RESOURCES OF MISSISSIPPI

· 43

Remarks		U	υ	U			U	U		
Date		1969	1968	1968			1965	1964	1965	1968
Yiald Gallons per Minute		150	195	150			100	180	317	150
Use U		G 4	P <u>.</u>	· ßr	. ч		ρ,	Ω.	д	р,
		1969	1969				1966	1964	1965	1968
Above or bula lend surface (ft.)		178	285			ы	197	250	204	224
Elev. of land surface datum (ft.)	Union County	460		430	490	Nebster County	420	440	421	460
Cesing Diamater (in.)	됩	8, 4	8, 4	30	4, 2	Web	8, 4	10	10, 6	8, 4
Depti (fi.)		856	1,117	700	685		2,198	2,410	2,235	1,024
Year Drilled		1969	1969	1968	1961		1965	1964	1965	1968
Owner		North Haven Water Assoc.	East New Albury Water Assoc.	Alpine Water Association	S. C. Pakestraw		Sapa Commity	Walthall Water Association	Town of Mathiston, No. 1-D	Omberland Nater Association
Well No.		с 5	11 2	11	12		Н 2	F 11	t r	X 2

Table 7.—Records of selected wells in Area II.—(Continued)

WATER RESOURCES OF MISSISSIPPI

The Cretaceous deposits (Upper Cretaceous sands) are exposed in the area. The beds outcrop in a general north-south belt with younger beds exposed to the west and south. The beds dip gently at the rate of 20-35 feet per mile from their outcrop and the trend or strike is in a north-south direction. Cretaceous beds which occur near the surface in Lowndes and Monroe counties would be 2,500 to 3,000 feet deep in northwestern Kemper County.

The Cretaceous deposits are unconsolidated sediments consisting of sand, silt, gravel, limestone and chalk or mixtures of these. Thickness of the Cretaceous deposits is up to 2,500 feet in the southern part of the region.

LOWER CRETACEOUS AQUIFERS

Lower Cretaceous deposits are present in the southern portion of the area. The Lower Cretaceous deposits have the potential of producing large amounts of water in this region but are secondary in importance to the shallower Upper Cretaceous aquifers. The Lower Cretaceous deposits separate the underlying Paleozoic rocks from the Upper Cretaceous series. These deposits underlie Calhoun and Chickasaw Counties, and the northeastern part of Clay County and southward. The northern edge of the Lower Cretaceous deposit is irregular and the unit thickens rapidly south and westward to a maximum thickness of about 1,000 feet in western Winston and southeastern Noxubee Counties. Only the upper portion, 100 to 300 feet, contains fresh water, particularly in the southern part.

The Lower Cretaceous aquifer has not been tapped for water in this area because of the availability of shallower aquifers and the depth to the aquifer, 1,500 to 2,500 feet. Electrical logs of oil tests indicate the presence of thick water-bearing zones in the Lower Cretaceous in Calhoun, Clay, Oktibbeha, Lowndes, and Noxubee Counties.

UPPER CRETACEOUS AQUIFERS

All major ground-water development in northeast Mississippi is from aquifers in the Upper Cretaceous. The Upper Cretaceous deposits overlie the Paleozoic rocks in the northern portion of Area II and overlie the Lower Cretaceous deposits in the southern portion.

The Upper Cretaceous deposits are divided into several formations or groups which include in ascending order the Tuscaloosa Group which is subdivided into the Massive sand, (Lower Tuscaloosa), Coker (Middle Tuscaloosa), and Gordo (Upper Tuscaloosa) by some authors; the Eutaw formation which includes the McShan; and the Selma Group which includes the Mooreville chalk, Coffee sand, Demopolis chalk, Ripley, Prairie Bluff chalk, and the Owl Creek (Table 6). The aquifers in the Upper Cretaceous include the Tuscaloosa, McShan and Eutaw, and the Coffee sand and Ripley of the Selma Group.

TUSCALOOSA AQUIFER

The Tuscaloosa group, which includes the Massive sand, Coker and Gordo aquifers, is an important source of water throughout most of northeast Mississippi. Drilling contractors rely on the diagnostic pink or red color of horizons in the deposits to locate the Tuscaloosa aquifer in the subsurface.

The Tuscaloosa Group is from 500 feet thick near the outcrop in southeastern Monroe County to about 1,500 feet thick in southern Kemper County. Most of northeast Mississippi is underlain by all or part of the Tuscaloosa Group. Numerous municipal, industrial and domestic wells are completed in these aquifers. The Tuscaloosa aquifers are second to the Eutaw aquifer in potential ground-water development over this wide area.

The Tuscaloosa group consists of coarse sand, angular and rounded gravel and clay. The 100 to 200 foot thick sand and gravel deposits are capable of yielding 500 to 2,000 gpm to properly developed wells (Table 7).

Fresh-water is present in the Tuscaloosa further south than fresh water is found in the overlying Eutaw aquifer. A test well (K 2) at Electric Mills in northern Kemper County proved that the lower Tuscaloosa aquifer was fresh.

EUTAW AND McSHAN AQUIFER

The Eutaw aquifer is the most widely used and has the greatest potential for ground-water development throughout

northeast Mississippi. The Eutaw is exposed at the surface in a wide belt from central Lowndes County to Tishomingo County. The base of fresh-water in the Eutaw is from 1,200 to 1,600 feet in the southern part of Area II. The fresh-water boundary of the Eutaw extends to the east and north of the fresh-water limit of the Tuscaloosa aquifer. The Eutaw overlies the Tuscaloosa Group in all areas except in Area I where it overlies the Paleozoic rocks.

The thickness of the Eutaw, including the McShan formation, is up to 400 feet. The Eutaw sediments consist of sand, silt and clay.

Usually, the Eutaw is distinguished by the abundance of the mineral glauconite in the sand and the consistency of the fine-to medium sand.

Domestic and other small wells are completed in the Eutaw aquifer throughout much of the area. Large capacity wells for municipal and industrial use have been completed in the Eutaw at many locations. The average yield from this aquifer is about 250 to 500 gpm, although slightly greater yields are possible at some locations. A number of industrial and municipal wells are drilled through the Eutaw sand to reach the coarse sand and gravel of the underlying Tuscaloosa aquifers.

COFFEE SAND AQUIFER

The Coffee sand is located above the Mooreville chalk and below the Demopolis chalk. The Coffee sand is an important aquifer in Alcorn, Prentiss, Tippah, Union, northern Pontotoc, eastern Lafayette, and northwestern Lee Counties. The Coffee sand is exposed at the surface in a belt from central Lee County to the Tennessee line above Alcorn County.

Thickness of the Coffee sand in the subsurface averages about 250 feet. Sediments of the Coffee sand include sand, sandy clay, and calcareous sandstone. Glauconite is present in the sand but is not as abundant as in the Eutaw. The depth is relatively shallow in the area of potential use and most of the wells are completed at less than 1,000 feet.

Potential yields from the Coffee sand are from 200-300 gpm maximum. This yield is low in comparison to other aquifers in the area.

RIPLEY AQUIFER

The Ripley formation, which in the northern part of the area includes the McNairy sand member, contains important aquifers in the northern and central part of Area II. The Ripley formation overlies the Demopolis chalk and underlies the Prairie Bluff chalk and the Owl Creek formation.

Thickness of the Ripley is from 50 to 460 feet and includes the 200 foot thick McNairy member in the north-central portion of the area. The McNairy sand member is an excellent source of ground water in Marshall, Benton, Tippah, Union, northern and eastern Lafayette and northern Pontotoc Counties.

The Ripley includes sand, clay, limestone and chalk with the McNairy being the only major sand unit. Fresh-water is present in the Ripley to a depth of about 1,000 feet below sea level in the western part of the area.

Wells in the McNairy aquifer will yield moderate to high quantities of water throughout most of the area of potential use. The availability of the shallower Wilcox aquifers in the western part of northeast Mississippi has limited the amount of drilling to the McNairy aquifer.

Water levels in northeast Mississippi are from flowing wells with 44 feet of head to as much as 250 feet below the land surface. Flowing wells are common along the Tombigbee River and its tributaries and tributaries of the Mississippi River located in northeastern Mississippi. Heavy pumpage in local industrial or municipal areas results in a cone of depression being developed in the water levels at certain locations. Large concentrations of ground water pumpage are located at Amory, Aberdeen, Tupelo, West Point and Columbus in Area II (fig. 6).

QUALITY OF WATER

Generally, the ground-water in northeast Mississippi is of good quality for must purposes. Most of the water from the Cretaceous aquifers is soft and low in mineral content (Table 8). Excessive iron is present in some of the aquifers particularly the Tuscaloosa in the eastern part of the region near the outcrop. Moderately hard water is present in the Ripley across the northern counties.

	Temperature (0:F)			72		4	6		75	96	36	96	98	79		83		11
-	Нq			7.4		7.9	7.9		8.0	7,9	7.8	7.8	8.0	8.2	8.0	6.7		8.3
-	Total Hardness as CoCO3			160		120	69	53	67	59	54	89	R	61	26	56		18
•	l _{ota} 1 bevlezziQ zbi lo2			167.87		611,60	524,12		499.53	655.27	528.56	881.36	546.22	473.36	736.74	541.65		280,00
•	Flouride (F)			0.1						ч.	-	ů	?	۲.	8.	ŗ		'n
	Chloride (CI)	Â		φ		310	250	242	230	315	235	440	227	127	315	240		2
•	(\$O2) statle2	Health, 13		12.02												14.16		
ea II.	(X) muizzete9	te Board of	mty		Juney												County	1.75
lls in Ar	(oVi) muibos	(Analyses by Mississippi State Board of Health, 1974)	Benton County	2.59*	Calhorn County	194.23*	176.91*		175.70*	235.63*	182.82*	314.41*	204.30*	186.84*	276.42*	197.44*	Chickasar County	106.18
om we	(նչվ) աոււշունօլվ	os by Miss		12.15		10.69	6.56		7,78	5.59	3.89	3.89	2.67		2.43	6.80	•	1.22
water fr	Calcium (Ca)	aylan()		44.07		30.45	16.83		14.02	14.42	15.22	20.83	8,81	2.80	6.41	11.22		5.21
'ses of	(si) non			0.6		.75	۳.	۳.	1.0	4.	۲.	ŝ	.2	.2	ŗ	8.		ŗ
analy	2012) 03112]		5.2		3.2	13,2		4.8	8.4	19.6	23.6	10.4	11.2	25.2	2.4		1.2
8.—Chemical analyses of water from wells in Area II.	ətoQ bəzylanA			9-26-68		8-8-68	8-30-67	3,28-68	8-8-68	8-30-67	10-24-67	9-7-67	10-24-67	10-24-67	1-25-65	8-8-68		12-30-69
8.	Depth] .		920		1,887	1,925	1,850	1,715	2,040	1,830	2,410	1,875	1,445	2,250	2,019		720
Table	.ch lls//	1		н		B 6	c 1	D 4	81	G 1	H 4	1 C	K 1	L 1	N 2	0 4		L 2

	(3°0) onicionadaol			7	69	67				5		7.9 (color 60)	90	85		
	Hq			8.2	8.3	8.0	6.3		6.3	6.2		7.9 (0	7.6	7.8	8.1	
	Total Hardness as CaCO3			ព	61	Q	ç		ដ	27		16	48	ž	J.	
	Total Doved Solids Solids			531.67	406.33	187.15	88.29					1068.71	615.27	1248,91	1376.25	
~	Flouride (F)			3.5	9.	ci.						2.4	۲.	3,2	1.6	
inued	Culoride (CI1			911	8	ព	2		54	۳		445	280	615	625	
(Cont	Sultate (504)	(Analyses by Mississippi State Board of Realth, 1921)				17.45	15.6			2.50					13,50	
vrea II	(2) muissolofi	a Board of 1	mty.					Jounty			<u>unty</u>	3.60	3.60	UU *9		
≜ ni sll	(nV) muibe2	ssippi State	Clay Comty	215.70*	158.87*	61.74*	16.84*	Itawanba County			Kerper County	120.0	208.0	448.0	-H2"H25	
rom we	(pM) muisangoM	s by Missin			1.94	2.92	3.2			1.22		0,97	1.94	2.43	4.13	
water f	Calcium (Ca)	(Analyse		4.80	11.41	7.21	12.17			8.81		4.81	16.02	19*6	1.21	
yses of	(e3) noi			0.2	•02	50.	6		2.0	10		1.0	.75	1.0	ŗ	
anal	(SOIS) coilic			6.8	8.4	6.8	7.3					2.8	2.0	1.6	8.8	
Table 8.—Chemical analyses of water from wells in Area II.—(Continued)	Date Date Date			6-23-67	10-17-66	9-4-68	7-5-62		10-31-68	1169		12-3-68	12-3-68	12-3-68	7-31-68	
) 80	ղւեցն			1,120	565	105	810		344	1/1		1,348	2,410	1,718	1,515	
Table	•°N IIM			5	G 1	11	7 11		G 2	C J		11	K 2	K 2	61 4	

	(7:0) anutoragmaT		82		.66	65			3	99	65		69	67			67	99	99	F
	Hq		8.1		80	6.7	7.5	7.7	7.6	7.8	8.2	7.8	7.9	7.9		6.2	6.6	6.6	6.8	8.0
	Total Hordness os CaCO3		11	Q.	166	104	2	89	123	110	16	(28	35	6		54	33	4	ġ.	e.
	. fotot boylessiQ TiblicS		331.97		440.53	190.86			234	315-69	228,38		253.22	234.74			64.97	90°71	97.21	126,33
	(F) obinuli		.		-:				°.	7				÷			0	0	•	.
nued).	Cisloride (CI)	(U.X.	132		200	Ω,	72	ដ	63	131	19	ន	83	76		ъ	4	Ś	7	22
-(Conti	(\$O2) stallu2	f Health,	4.28		4.12	3.46			7.2		30.12		13.13	3.13			4.61	3.95	18.[
ea 11	(X) muissolo9	te Board o	3,60		6.00	3.25			3.4					00"†	ounty					
lls in Ar	(aV) mibez	Analyses by Alssissippi State Board of Hoalth, pun Lafovette County	92.0	I.oc Comby	101.50	31.72			¥.	82.63*	41.83*		60.81*	54.50	Loades County		6.78*	10.72*	134.6*	495.45
om we	(GM) muisongaM	ses by vis	2.19		13.61	5.35			3.0	7.73	95*9		8,02	3.16			3.16	3.40	5.10	
water fr	Calcium (Ca)	v(tear)	27.24		11.87	32.85			×	31.25	23.64		24,84	30,85			8.01	12.02	11.22	3.20
ses of	(ag) ucij				.6-1.0	ŗ	trace	trace	60°	ŗ.	Ð	trace	°.	7		4.5	6.0	10	10	۳.
analy	(² Ois) Silica		3.2			3.2			2		2.0		4.4				3.6	1.2	1.2	e.
Table 8.—Chemical analyses of water from wells in Area II.—(Continued)	Dale Dale		12-11-68		3-20-69	3-20-69	6-10-67	6-20-67	1966	2-10-67	3-4-68	12-20-67	9-26-68	5-13-69		1965	5-8-67	5-8-67	5-8-67	10-24-67
8.	Depti		1,650		909	510	470	400	067	1+5	596	395	619	570		323	620	468	460	1,175
Table	vell No.		Е К.		10	ЕТ	ці	11	п,2	E H		с Г	К.4	К 5		B L	C 1	и 1	И 2	11

MISSISSIPPI GEOLOGICAL SURVEY

	(3°C) suutonogmoT		Ю.	65	65	5		98						78	76	8	98	80	78	78
	Hq		6.5	8.2	8.2	5.3		8.3	7.9		8.3	8.3	8.2	7.4	7.4	8.2	8.0	7.9	8.0	8.1
	Total Hardness as CoCO3		ŝ	59	47	ω		ដ	45		26	88	35	29	7	24	24	29	18	22
•	loteī boviezzī zbile?		69.32	189.36	255.69	11.05		712.19			544.54	512.08	461.25	119.28	112.41	550.67	663.77		259.53	19.014
-	(7) obiweli		c	c	c	c		9			ŗ	5	r.	c		1.2	7.	c	o	7.
tinued	Charide (CI)	(internet internet in	2	5	82	e		340	165		253	237	208	16	15	350	325	271	142	192
–(Con	Sulfate (SO4)	lealth,	7.24	5.76	8.06									20.57						
vrea II	(X) muissate9	te Board of Dumty	1.25				ounty	3.20		County							3.25			2.75
ells in A	(avi) muiboz	pualyses by Mississippi State Bourd of Health, pen Mance County	2.75	53.18*	83,29*	6.51*	Nontree County	250.00		Oktilibeha County	207.82*	188.23*	170.83*	35.43*	33.25*	33.47*	251.68		48,27*	161.52
nom we	(ចុស) យករិះទទព្ភលំអំ	es by Ma	3.89	4.37	3.89			τ.			2.43	2.91	2.43	4.86	2.93	1.93		3.40	2.43	
water fi	Caleium (Ca)	Analys	15.22	36.43	12.42	3.20		п.22			6.41	10.41	10.01	3.60	8.81	6.41	9,61	10.26	3.20	18.91
/ses of	(54) neu		3,5	c	tracé	e.		9.	4		.75	۰.	.75	۳.	8.	0.3	°.	4	ŗ	ş
analy	(2012) Silica		1.2	1.2	3.6	4.8		6.8			1.2	2.8	1.2	1.6		2.8	4.0	12.4		3.2
8.—Chemical analyses of water from wells in Area II.—(Continued)	otaQ bazylanA		12-11-68	12-20-67	12-20-67	2-5-68		12-30-68	3-27-69		8-13-65	8-13-65	8-13-65	11-21-66	5-20-68	5-20-68	3-10-69	9-11-63	11-21-66	3-10-69
	Depth		325	348	270	124		1,832	2,113		1,841	1,594	1,645	1,521	1,404	2,040	1,696	1,759	1,468	1,426
Table	.en liaw		B 1	6 1	G 2	1 r		11	s 1		в 1	B 2	в 3	c 1	C 7	Е 1	F 2	г 3	G 1	6 2

52

÷ `

	(1°0) anutaraqmaT			11	7	06			23	68	Ľ	69	82	Ę		3	3
-	Hq			7.8	8.1	8.0			7.9	8.0	8.2	8.2	8.2	8.2		8.0	7.9
	Total Hardness es CoCO2			21	16	ň			78	105	74	62	42	38		102	106
	Tatal Bovices Solids Solids			90.011	11.861	713.62			261.11	264.15	222.68	246,65	361,69	220.22		168.18	164 . 49
	Flouride (F)			0	-!	5			0	Ŀ.	0	ę	5	ų		c	•
inued)	Cidoride (CI)	2		5	15	330			102	80	9	5	137	62		51	61
–(Cont	(\$O2) stailu2	Hoalth, pp	-1							22.71	6.58	7.41		5.60		16.65	13.32
rea II	(3) muissote9	te Board of	(continued		2,00		Country	ĺ	4.00		3.00	2.75		4.00	County		
lls in A	(aV) muibe?	(Analyses by Mississippi State Board of Hoalth, pan)	<u>Oktibeha County (continued)</u>	38.41*	54.12	274.33*	Pontotoc County		64.80	62.81*	56.90	81.26	128.02*	67,50	Prentiss County	25.05*	26.00*
om we	(pM) muisançoM	te by Niss	OKLIN	3.16		2.43			5.35	96*6	4,13	3.16	3.40	1.94		6,80	7.29
water fr	Calcium (Ca)	(Analyse		3.20	6.41	9.62			22.44	25.64	22.84	24.04	11.21	12.02		29.65	30.45
/ses of	(ə4) nou			. 05	г.	۰.			ŗ	trace	traco	ŗ.	4	г.		•05	ŗ
analy	(Silice (SiO ₂)				6.4	1.2			10.4		3.2	1.2	5.2	4°U		3.2	2.4
Table 8.—Chemical analyses of water from wells in Area II.—(Continued)	ο Απαίγεο Οαίο			11-21-66	10-10-69	5-8-67			1-13-69	4-2-68	6-20-69	3-20-69	10-17-65	11-18-68		6-16-67	6-16-67
)	Depili			1,230	1,234	1,940			1,188	850	1,030	826	1,565	1,060		420	442
Table	.cN 11377			ИІ	11 2	КI			C L	D 2	р 3	P 4	r 2	1 1		۲ ع	X 2

į

WATER RESOURCES OF MISSISSIPPI

MISSISSIPPI GEOLOGICAL SURVEY

	Temperature (0°F)			2	73	65	65	53		67	68	99		55	92	16	
	Чd			7.8	7.6	7.7	7.8	7.8		8.2	8.0	8.0		6.7	8.0	6.7	
	Total Hardness			114	160	145	107	96		20	80	112		67	29	61	2
	foteT boviczziQ zbilc2			156.41	404.17	181.18	190.61			171.60	209.42	308.32		29" 101	726.28	664.82	Sodius and Potassium as Na
	(†) sbisucij			•	ŗ	0	r:			0	.2	0		'n		4	I fue cui
inued)	Chloride (CI)	Ĩ.		ŝ	145	-	п	=		5	80	100		350	322	330	Pos .
-(Cont	(‡OS) stalluS	Bealth, B		17.28	45.42	15.31	32.26			10.21	6.58	16.13					
rea 11	(X) muissotof	te Board of	ounty			3.00	3.00		<u>mty</u>	2.75	4.5	5.0	xinty				
lls in Ă	(BN) muipes	Analyses by Mississippi State Board of Health, pra	Tippuh County	18.95*	90*65*	15.12	27,05		Union County	59.80	82.32	74.26	Webster County	259.75*	280.67*	244.90	
om we	(GM) muisangoM	os by Mise		13.12	15.01	7.05	4.62				1.46	7.05		2.65	1.45	2.67	
water fr	Calcium (Ca)	(Analys		24.03	39.66	46.47	35.25			8.01	29.65	33.25		15,22	9.21	15.22	
'ses of	(si) noil			0.2	5	r.	trace			٦.	ŗ	ન		ų	s.	~	
analy	(SOI2) osilia				4.4	3.2	4.8			4.8	3.2	2.4		2.0	1.2	2.4	
Table 8.—Chemical analyses of water from wells in Area 11.—(Continued)	Seie Daiyed			10-24-67	1-26-65	9-25-69	9-25-69	6-3-68		1969	1969	3-10-69		11-20-67	3-18-65	11-20-67	
8	ukq90			861	1,120	671	940	690		856	1,117	004		2,198	2,410	2,235	
Table	veli Nov			D 1	E 1	r 1	01	14		C 2	И 2	11		Н 2	† H	ŝ	

Mineralization of the water increases with depth and southward along the strike. The Eutaw aquifer contains water too highly mineralized for domestic use along the southern and western periphery of the region. The lower Tuscaloosa (massive sand) yields water of the best quality throughout most of the region. Water from the Eutaw is good and is widely used for municipal, industrial and domestic wells in the area.

Flouride is present in the water from some of the Cretaceous aquifers. Locally the flouride content may be excessive and is up to 7 ppm in some places.

GROUND WATER

AREA III

The area of north central and central Mississippi is underlain by aquifers in several geologic units (fig. 7). Most of the aquifers are shallow and outcrop within the area. The amount of available water in the aquifers varies with location, depth and geologic conditions.

Multiple aquifers are present at most locations and the water supplies are from various aquifers in the region. The major aquifers underlying the region (or parts) are the Coffee sand and Ripley of Cretaceous age; the Wilcox, Meridian sand and Kosciusko of Eocene age (Table 9). The Neshoba sand, Tallahatta, Winona and Cockfield of Eocene age are minor aquifers in Area III with limited areal extent and use.

The aquifers generally consist of varying thicknesses of sand separated by clay layers. The sands are present at various positions within the particular unit or may comprise the entire unit. Some of the geologic units are lenticular in nature (particularly the Wilcox near the outcrop) and the sand thickness is difficult to predict.

Most water supplies at the present time utilize shallow aquifers and the deeper aquifers are generally not extensively used. The potential use of the aquifers extends over a large area and generally the limiting factor is the downdip extent of fresh water.

Fresh-water is present in Area III to more than 3,000 feet below sea level. The deepest fresh-water is in the Wilcox aquifer

Table 9.—Stratigraphic column and water resources in Area III.

Quality is generally good. Low pH and iron concentration may be a problem at some locations. Generally not an aquifer. A few domestic wells are completed in the Owl Creek in Marshall Generally not an aquiter. Some local domestic wells utilize this aquifer. The deposits may A fair aquifer for domestic wells in Marshall and eastern DeSato Counties. Depth (2000 feet An important aquifer underlying much of the area. A large number of wells are completed in this aquifer. Difficult to separate from underlying Wilcox when both units have sands at An important aquifer through the central part and to the west and southwest of the outcrop. Supplies water systems and other smaller wells in the western and southern part of the area. Not an important aquifer. A few domestic and some municipal wells are completed in this Supplies a number of domestic wells near the outcrop area. Some public and industrial water Not an important aquifer. Supplies a few domestic wells along some of the major streams. or more) and availability of shallower aquifers have limited the utilization of this aquifer. Supplies water to wells along the southern boundary of Area III and along the outcrop area. One well was completed in wells are completed in this aquifer at certain locations. The aquifer is more important in the northern and central part than in the southern part. Water quality is generally good. Quality of water is good Colored water is a problem One of the most widely used aquifers throughout the area. Many large water supplies An important aquifer in Marshall, DeSoto and Tate Counties. this aquifer at a depth of 1620 feet in Marshall County (D1). are from the Wilcox. Quality of water is generally good. WATER RESOURCES have thick sands developed at some locations. in some of the local areas. Ouality of water is fair. Not an aguifer. Not an aquifer. Vot an aquifer. the contact. aquifer. County **THICKNESS** 25-2000 100-150 200-500 150-250 8 1 8 0-150 300-400 8 10 0-150 0-140 0-150 ş 0-50 0-800 6-30 (feet) g \$ 200 Meridian sand Porters Creek clay STRATIGRAPHIC UNIT Prairie Bluff chalk Neshoba Sand and Basic City Demopolis chalk Cook Mountain Undifferentiated and Owl Creek Coffee sand Cockfield Kosciuska Alluvium Naheola Clayton Ripley Terrace Deposits Zilpha Winona Looss ottodolloT Claibome Midway GROUP Wilcox Selma eusoisie ale Paleocene Holocene SERIES Eocene <u>e</u>lf Cretaceous Quaternary SYSTEM Tertiary E Siozone DiozozeM

MISSISSIPPI GEOLOGICAL SURVEY

in central Scott and Jasper Counties (fig. 2). The Cretaceous aquifers in the extreme northern part of the region contain fresh water to a depth of 2,000 feet below sea level. The shallowest fresh waters are present along the eastern part of the region to a depth of 500 feet below sea level in the Wilcox.

Most of the geologic units are thin near the outcrop and thicken downdip toward the west and southwest. The thicker sands are capable of supplying higher yields to wells but generally the mineralization of the water increases with depth.

COFFEE SAND AND RIPLEY AQUIFERS

The northern part of Area III is underlain by fresh water aquifers in the Cretaceous. Fresh water is present in the Coffee sand to a depth of 2,000 feet below sea level across western Marshall, eastern DeSoto and northwestern Lafayette Counties. The Cretaceous aquifers are generally not used for water suplies at the present time, and these aquifers are important for their potential use in the future. The availability of the shallow Wilcox, Meridian, and Kosciusko aquifers has limited the use of the deeper Cretaceous aquifers.

The Coffee sand is presently unused in Area III although wells are completed in the Coffee sand in eastern Lafayette County. Depth to the top of the Coffee sand ranges from about 1,400 feet at Potts Camp to about 2,300 feet at Byhalia. Thickness of this unit is estimated to be 150 to 200 feet. Thick sands capable of yielding large quantities of water are unlikely in the Coffee sand in this region. Quality criteria for certain domestic wells may justify investigating the Coffee sand aquifer in the northern part of Area III.

The Ripley is a potential aquifer in the northern part of Area III (fig. 3). The Ripley formation lies above the Coffee sand. This unit overlies the Demopolis chalk and is located below the Prairie Bluff and Owl Creek formations. Wells are completed in the Ripley aquifer in Marshall and eastern Lafayette Counties.

Depth to the top of the Ripley ranges from 800 feet at Potts Camp to 1,540 feet at Byhalia (Well No. D1) (Table 10 and fig. 7). Thickness of the Ripley is estimated to be about 400 feet and individual sand beds are as much as 200 feet thick. The

Table 10.—Records of selected wells in Area III.

Well No.: Number correspond to those on well-location maps, chemical-analysis tables and pumping test tables.

Majority of wells are rotary drilled.

Water Level: M, Measured; R, Reported.

Remarks: C, Chemical Analysis; O, Observation Well; P, Nimping Test.

Use of Welli: D, Domestics 1, Industrials 18, Irrigations N, Nones O, Observations P, Public Supplys S, Stock; T, Test.

Elevation: Elevations determined mostly from topographic maps having contour intervals of 10 or 20 feet.

							r, rumping lost.	631.			
Well No.	Ormer	Year Drilled	Depih (fi.)	Casing Diameter (in.)	Elev. of land surface datum (it.)	Weter Level Above (†) or below tend surface Date (†.) Measure	ter Level) Dato of Measurement	ň	Yield Gallens per Minute	a Sec	Remarks
				됩	Attala County	R					
K 2	Sallis Commuty Water System	1966	621	10, 6	360	65	1966	<u>в</u> .	150	1966	U
L 2	McAdams Water Association	1966	541	10, 6	340	40	1966	P .	150	1966	υ
м з	City of Kosciusko	6961	439	18	455	141	1969	۵.	011	1969	
s 2	Trace Water Association	1968	600	10	430	115	1969	6 .	150	1969	U
U 2	Zema Wator Association	1968	520	8, 4	570	170	1968	۵.	150	1968	υ
				8	Calhoun County	저					
J 2	C. G. Stoele	1961	246	4, 2	275	4	1967	۵	8	1961	
				8	Carroll County	ы					
B 1	Dave George	1966	469	4, 2	342	160	1966	۵	S	1966	
83	Roward Janes	1969	310	4	380	186	1969	n	80	1969	
D 1	Kennoth Walls	1967	475	4	340	170	1967	۵	œ	1961	
F 1	McCarloy Water Association	1961	426	9	325	138	1961	р.	100	1961	υ
F 4	Town of North Carrollton	1969	727	10	250	78	1969	۵.	250	1969	

υ

1968

ŝ

۵.

1968

8

õ

6, 3

986

1968

Black Hawk Water Association

M 2

MISSISSIPPI GEOLOGICAL SURVEY

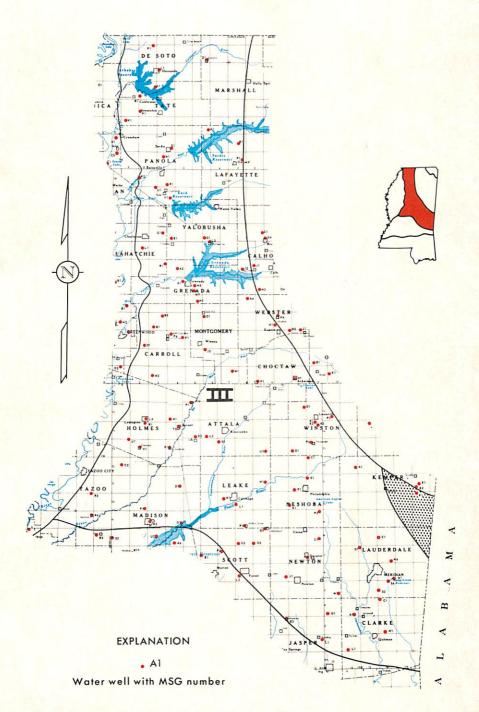



Figure 7.-Location of selected wells in Area III.

III(Continued)
Area
wells in
selected v
of
10.—Records
Table

				Casing	Elev. of !and surface	<u>Xate</u> Above (1) or below land	<u>Water Level</u> e (1) low		Yield		
Vell No.	Owner	Year Drilled	Depth (fr.)	Diameter (in.)	datum (ft.)	surface (fr.)	Date of Measurement	Use	Gallons per Minute	Date	Remarks
				윙	Choctaw County						
F 1	French Cump Water Association	1968	690	10, 6	160	85	1968	۵.	154	1968	υ
Н 1	Town of Ackerman	1968	96	18, 10	518	n	1968	۵.	420	1968	υ
				레	Clarke County						
A 1	Southern Natural Gas Company Mell No. 2	1967	1355	10	260	+30	1967	н	380	1967	
c 1	Clarkdale Water Association Well No. 3	1965	1270	10	540	247	1965	۵.	164	1965	
Н 1	East Quitman Water Association	1968	368		340			H			υ
L 1	Barnett Water Association	1968	330	4	310	80	1968	d,	40	1968	U
				ଥା	DeSoto County						
ΓI	Horn Lake Water Association	1965	470	8, 6	340	124	1965	5	215	1965	υ
K 1	Walkem Development Corporation	1966	433	8, 6	320	116	1966	G ,	500	1966	
L 1	Town of Hernando	1968	335	10	385	160	1968	۵,	750	1968	
				Gren	Grenada County						
A 2	Geeslin Corner Water Association	1968	653	8, 4	195	9	1968	Δ.	150	1968	ບ
G 1	Holiday Inn	1967	662	9	250			4	96	1967	
н1	Elliot Community Water Association 1966	1966	466	89	221	29	1966	۵.	137	1966	υ
S H	Knox Hill Water Association	1968	482	80	280	41	1968	д,	85	1968	

WATER RESOURCES OF MISSISSIPPI

					Elev. of !and	Vatu Above (1) or below	Vater Level e (i) low				
V/ell No.	Owner	Yeor Dritled	Depth (fr.)	Lasing Diameter (in.)	datum (it.)	surface (ft.)	Date of Measurement	Use	Gallons per Minute	Date	Remarks
				Ξ	Holmes County	ы					
11	Town of Nest	1968	1,340	Q	275	+	1968	G 1	75	1968	υ
L 4	Harthrock Grocery	0701	1,155	4	205	+	1970	н	50	1970	
NI	West Hill Water Association	1967	939	8, 4	400	140	1968	4	100	1967	υ
Rl	Sweet Home Water Association	1965	1,130	10, 6	300	06	1965	4	200	1965	U
T 3	Town of Durant, Lamar St. Well	1968	670	18	265	+	1968	4	500	1 9 68	
U l	Harland Creek Commuty Water Assoc.1966	oc.1966	1,270	6, 3	340	142	1967	4	145	1967	υ
V L	Ebenezer Water Association	1967	1,396	10, 6	348	90	1967	ų.	300	1967	U
Хl	Holmes Junior College	1968	1,030	10, 6	300	32	1968	P .	300	1968	
				10	Jasper County	절					
D 1	Rose Hill Water System	1967	886	80	390	97	1967	ф.	200	1967	U
E 2	Montrose Water Association	1968	603	4, 25		162	1968	6	80	1968	υ
ГI	Paulding Water Association	1968	810	10, 8	525	247	1969	Д.	305	1969	υ
				×I	Kemper County	功					
A 1	North Kamper Nater Association	1969	276	91	515	80	1969	۵.	200	1969	
				E	Lafayette County	unty					
Al	Harmontown Water Association	1969	352	89	420	156	1969	A	230	1969	U
B 1	Hurricane Water Association	1961	240	9	520	180	1968	G.	100	1968	υ
F 1	Campground Water Association	1966	06 T	8	560	154	1967	G	120	1967	υ

Table 10.—Records of selected wells in Area III.—(Continued)

MISSISSIPPI GEOLOGICAL SURVEY

III.—(Continu
Area
.⊑
wells
selected
đ
õ
Table

ed)

:				Casing	Elev. of !and surface	V(ate Above (-) or below lend	Vlatu Luvel e (+) tlov		Yield		
V:ell No.	Owner	Year Drilled	Depth (ít.)	Diameter (in.)	datum (ft.)	surface (f1.)	Date of Measurement	Use	Gallons per Minute	Date	Remarks
				TAIK	Lauderdale County	inty					
CI	North Lauderdale Water Assoc.	1966	200	8, 6	520	232	1968	e.	250	1968	U
61	Okatibbee Dam Site - West Bank	1968	541	7	390	85	1968	Ł	20	1968	υ
H 4	Lockheed Aircraft Corporation	1969	758	10, 6	470	211	1969	I	520	1969	
N I	Long Creek Water Association Well No. 2	1965	747	10, 6	545	285	1965	4	183	1965	υ
S 2	Clarkdale Water Association	1965	1,195	10, 6	580	310	1965	G ,	151	1965	
s 4	Long Creek Wator Association Well No. 1	1966	1,020	10, 6	565	288	1966	сı	150	1966	υ
				뫼	Leake County						
Н 1	Edinburg Comunity Water Assoc.	1966	849	8, 6	385	29	1966	Δ,	157	1966	<u>ں</u>
K 1	Pilgrim Rest Water Association	1967	776	9	390	74	1967	84	136	1967	U
L J	Fromy Water Association	1969	613	70	465	140	1969	4	300	1969	
r 1	Freeny Water Association	1969	254	10	465	911	1969	đ	254	1969	U
Ρ1	Town of Walnut Grove	1 961	368	6, 4	360			۵.	115	1961	
				Mad	Madison County	ы					
D 1	Candem Nater Association	1968	476	ø	320	6	1968	۵.	100	1968	υ
F 1	Big Black Water Assoc., Well No. 1 1967	1967	923	10	222	50	1967	۵.	100	1968	U
N 2	Canton Municipal Utilities	1969	930	18, 10	210	68	1969	£-	1016	1969	
01	Pearl River Valley Authority Ratliff's Ferry Woll	1970	314	4, 2	300	31	1970	24	24	1970	

WATER RESOURCES OF MISSISSIPPI

											ļ
					Elev. of land	V/ate Above (+) or below	V/ater Level e (i) low				
Well No.	Owner	Year Drilled	Depth (fr.)	Casing Diameter (in.)	surface datum (i)	land surface (ft.)	Date of Measurement	ñ	Yield Gallons per Minute	Date	Remarks
				un M	Marshall County	R					
D 1	Town of Byhalia	1969	1,620	10, 8	360	+13	1969	A	350	1969	υ
				Mont	Montgomery County	쳤					
D 1	Slodgetown-Eskridge Water Assoc.	1966	530	8, 4	280	41	1966	с.	105	1966	U
J 2	South Winona Nator Association	1969	926	7	450	170	1967	۵.	8	1969	υ
M 1	Poplar Creek Water Ausoclation	1966	952	6, 4	409	06	1966	G	20	1967	υ
				NCS	<u>Neshoha County</u>						
c 1	North Pearl River Water Assoc.	1968	690	8, 6		140	1968	Ð.	200	1968	υ
F 1	Kenterska Valley Mater Association	1966	727	10	530	156	1966	8	125	1967	υ
G 1	Central Nator Association	1968	650	8, 6		87	1968	Д	225	1968	υ
K I	Southwest Mater Association	1968	390	8, 6		162	1968	e,	228	1968	υ
P 2	House Mater Association	1968	950	B, 6	019	240	1968	G ,	275	1968	υ
					Nexton County	2					
c I	Boulah-Hubbard Natar Association	1968	365	8, 6	555	205	1968	۵.	200	1969	υ
10	Town of Decatur	1966	306	12, 8	415	82	1966	д	212	1966	
1 5	Lawrence Water Association	1968	496	8, 6	493	175	1968	Д.			U
N 1	Chunky Water Association	1970	125	8	280	13	1970	۵,	8	1970	

Table 10.—Records of selected wells in Area III.—(Continued)

.

62

MISSISSIPPI GEOLOGICAL SURVEY

III.—(Continued)
Area
Е.
wells
selected
٩,
10.—Records
Table

<u>-</u>				Casing	Elev. af !and surface	V/at Above (I or below land	Vlotui Level e (i) low		Yield		
Vell No.	Owner	Year Drilled	Deplin (f.,)	Diameter (in.)	datum (fi.)	surface (fr.)	Dale of Measurement	Use	Gallans per Minute	Date	Remarks
					Panola County	м					
G 1	Tom of Sardis	1967	1, 141	12, 8	360	167	1967	4	150	1961	υ
ΤK	Hebron Water Association	1968	1,100	8, 6	320	140	1969	<u>م</u>	135	1969	υ
2	ELC Water Association	1968	1,164	8, 6	174	+10	1969	<u>م</u>	250	1969	U
R l	Mississippi State Highway Department Rest Area	1968	922	4, 2	303			6	30	1968	
U l	Independence Water Association	1968	240	8	320	145	1968	4	155	1968	υ
ΓΛ	Liborty Hill Water Association	1967	522	8	360	130	1967	6 .	165	1967	U
					Scott County						
C 2	H. & H. Water Assoc., Well No. 1	1968	939	10	423	011	1968	84	360	1968	
D 2	Steele Ringold Water Association North Well	1968	1,170	10, 6	470	150	1968	e,	300	1968	υ
£ 0	Sebastupol Watur Association	1969	576	16, 8	443	95	1969	4	650	1969	υ
				Tall	Tallahatchie County	unty.			·		
G 1	Spring Hill Water Association	1967	560	9		150	1968	۵,	135	1967	U
L 1	Paynes Comunity Water System	1967	1,312	8, 6	280	120	1967	Δ.	150	1967	U
R 1	Pea Ridge Water Association	1969	1,070	Ŧ	388	182	1969	۵.	011	1969	υ

Table	Table 10.—Records of selected wells in Area III.—(Continued)	vells in	Area II	l,—(Con	tinued)						
					Elev. of !and	V.(ate Above (+) or below	Váter Level e (I) flow		,		
Well No.	Qwner	Year Drilled	Deptin (fr.)	Casing Diameter (in.)	surface datum (ft.)	land surface (ft.)	Date of Measurement	Use	Yield Gallons per Minute	Date	Remarks
				FI	Tate County						
B 1	Town of Coldwater	1967	158	20, 12	280	58	1968	р.	1220	1968	
F 1	Strayborn Water Association	1968	006	10, 6	340	120	1968	P	200	1968	U
K 1	Strayhorn Nater Association	1968	1,600	8, 6	320	136	1968	£	150	1968	U
				पुत्रस्	Webster County	51					
A 4	Cadaretta Water Association	1969	272	8, 4	300	61	1969	e,	11	1969	
1 1	Mt. Zion Water Association	1967	370	10	480	158	1967	P.	80	1967	υ
Н 3	LeGrange Water Association	1969	149	8	355	46	1969	¢,	76	1969	
				MIL	Winston County	ы					
10	High Point Water Association	1966	412	10, 6	593	173	1966	P 4	160	1966	U
F 2	Bond Community Water System	1965	206	10, 6	520	76	1966	A	159	1966	U
K 1	City of Iouisville	1961	354	12	510	115	1967	£.	692	1967	υ
K 2	city of Louisville	1967	2,725	4	513	302	1967	÷	53	1967	U
К 3	Southeast Water Association	1965	210	10	554	124	1965	4	160	1965	U
01	Liberty-Plattsburg Mater Assoc.	1967	505	10	494	86	1967	۵.	160	1967	U
P 2	Town of Novapater	1969	525	80		155	1969	<u>р</u>	16	1969	U
				(a)	<u>Yalobusha County</u>	겨					
13	Tillctoba Water Association	1964	1,020	8, 4	325	011	1964	ρ.	189	1964	U
19	Conness Creek Water Association	1967	244	6, 4	350	140	1967	а	100	1967	υ
L 3	Town of Coffeeville	1968	458	10, 6	235	12	1968	Α	400	1968	υ

MISSISSIPPI GEOLOGICAL SURVEY

II.—(Continued)
Area
wells in
selected
Ъ
10Records
Table

.

Well No.	Owner	Year Drilled	Depth (ft.)	Casing Diameter (in.)	Elev. of land surface datum (ft.)	V/ah Above (.) or below land surface (fr.) h	Viatur Level Above (.) Above (.) Ion a surface Date of (ft.) Ateasurement	C.	Yield Gallons per Minute	Date	Remarks
					Yazoo County	County					
C 2	Midway Community Water Association	1968	1,920	10, 6	310	62	1969	4	250	1969	
R 3	Mississippi State Forestry Com.	1968	834	4, 2	185	266	1968	Ð	10	1968	
W 4	Cathey-Willford-Jones	1968	540	4, 3	180	75	1968	۵	n	1968	

McNairy sand member is an excellent source of ground water development in extreme northern Mississippi. Most of the ground water development in the Memphis area is in the McNairy aquifer. Large quantities of water are available from the Ripley throughout most of northern Mississippi. The availability of shallower aquifers in the Wilcox has deemed it unnecessary to drill to the Ripley in most places. Recently (1969) a municipal well (D1) was completed at Byhalia (Marshall County) in the Ripley and the water is of excellent quality from this well.

Water levels in the Cretaceous aquifers range from flowing wells to about 350 feet deep. Flowing wells should be possible in some of the major stream valleys. The deeper water levels would be located at high elevations on the tops of hills. Information on water levels is scarce throughout extreme northern Mississippi because of the few wells completed in these aquifers. Elevations are high throughout most of the northern part of the region with some elevations of 700 feet.

WILCOX AQUIFER

The Wilcox is an important aquifer throughout most of Area III. Numerous industrial, municipal and domestic wells are completed in the Wilcox aquifer. The Wilcox is a potential aquifer in the entire region and to the west in Area IV.

The Wilcox outcrops along the eastern part of the region. The Wilcox underlies the Tallahatta Group and is located above the Midway Group. Thickness of the Wilcox is from 900 to 2000 feet and individual sand beds are up to 200 feet thick. Thickness of the unit increases from the outcrop in the direction of dip which is west-southwest. Sand beds generally are present near the top and bottom but may be present at any position within the unit.

The Wilcox, in the northern part of the area, outcrops in the east and is nearly 1,000 feet deep (bottom) at Byhalia in the west. The bottom of the Wilcox is about 1,200 feet deep near Carrollton in Carroll County in the central part of the region. The Wilcox aquifer is from 1,670 to 1,963 feet deep at Midway in Yazoo County. A well would have to be drilled to over 3,000 feet in central Scott and Jasper Counties to penetrate the freshwater section of the Wilcox. Most wells completed in the Wilcox

are shallow to intermediate in depth within Area III. The availability of shallow aquifers in the Tallahatta, Kosciusko and Cockfield deposits has limited the use of the deeper Wilcox sands.

Fresh water is available in the Wilcox throughout Area III and extends to a maximum depth of 3,000 feet below sea level in Scott and Jasper Counties (fig. 2). Across central Tunica and eastern Quitman counties, the Wilcox is fresh to a depth of 1500 feet below sea level. Fresh water is present in the Wilcox to 1,000 feet below sea level in the northern part. The base of fresh water is up to 500 feet below sea level across central Montgomery, eastern Attala, western Winston, eastern Neshoba, southwestern corner of Kemper, and central Lauderdale Counties.

Most wells completed in the Wilcox are shallow to intermediate in depth and generally are located in the eastern and southern part of Area III. Some wells in the Wilcox have been drilled to a depth of 1,500 feet across the central part of the region. Very few wells have been drilled to the base of fresh water particularly in the central and southern parts. A deep hole 1,974 feet deep) has been contracted (1970) at Quitman in central Clarke County to test the lower part of the Wilcox.

Well yields from the Wilcox range from small to intermediate in most of the region. The majority of wells are for domestic or rural water systems and for municipal wells in the central and northern part. Most yields from the Wilcox have not exceeded 500 gpm. The town of Louisville has several wells which yield up to 750 gpm from the Wilcox at a depth of about 350 feet (Table 9). Predicted yields are higher in the central and southern region and properly constructd wells should yield up to 2,000 gpm at some locations in this region.

Water levels in the Wilcox range from near the surface or flowing in the deeper stream valleys, to several hundred feet deep at high elevations. Most water levels are from 100 to 150 feet deep. A large percentage of the land surface throughout Area III is 300 to 500 feet in elevation.

CLAIBORNE AQUIFERS

A large number of municipal, industrial and domestic wells are completed in the Claiborne aquifers in Area III. The MeriMISSISSIPPI GEOLOGICAL SURVEY

dian sand, Tallahatta, and Kosciusko are the major aquifers in the Claiborne Group. The Neshoba sand, Winona, and the Cockfield are Claiborne aquifers with limited areal distribution and use.

The Claiborne Group overlies the Wilcox and is located beneath the Jackson. Thickness of the Claiborne ranges from 2,500 to 3,000 feet and individual formations are several hundred feet thick. The beds increase in thickness in the direction of dip. The general dip is about the same as the underlying Wilcox (30-35 feet per mile). The Claiborne is fresh throughout Area III and has the potential of furnishing large quantities of water.

MERIDIAN SAND AQUIFER

The Meridian sand is the basal part of the Tallahatta formation and is also basal Claiborne. The Meridian sand supplies a large number of the water systems in the central part of the area. Municipal wells at West, Durant, Winona, Carrollton, Grenada, Water Valley, Oakland and Batesville are completed in the Meridian sand. Well yields range up to several hundred gallons per minute from this aquifer. A large number of small to intermediate yielding wells are completed in the Meridian sand across the northern and central part of the region.

The depth of the Meridian sand varies with location within the region. The top of the unit is 400 feet at Byhalia, Marshall County, in the northern part of the region and 800 feet deep at Black Hawk in Carroll County, in the central part of the region. The top of the Meridian sand is estimated to be 1,200 feet in central Jasper County in the southern part of the region.

Thickness of the Meridian sand ranges from 30 to 150 feet. The unit is thick in the northern and central part of Area III and thins in the southern part. The Meridian sand is difficult to recognize at certain locations where the Meridian lies on sands of the Wilcox.

The Meridian sand is potentially an important aquifer throughout much of Area III. The yields from individual wells vary from small to intermediate (20 to 500 gpm). At specific locations the sand may be replaced or nearly replaced by clay beds. Water levels in the Meridian are about the same as in the underlying Wilcox aquifers. Water levels range from flowing wells to about 200 feet deep. Heavy pumpage may have produced deeper than normal water levels at particular locations in the region.

KOSCIUSKO AQUIFER

The Kosciusko (Sparta sand) is located about the middle of the Claiborne Group. The Kosciusko overlies the Zilpha and is beneath the Cockfield formation. The Kosciusko is an important source of water across the southern and western part of Area III.

The Kosciusko is generally composed of varying thicknesses of sand separated by clay beds. Thickness of the sand intervals varies from a few feet to several hundred feet. The position of the sand layers may be at the top, middle or bottom of the formation but usually the thicker and coarser sands are located near the base of the unit. Thickness of the Kosciusko is from about 200 to 800 feet with the thickest section occurring in the western part of Area III.

Fresh water is present in the Kosciusko aquifer throughout the region (fig. 2). Most of the wells which utilize the Kosciusko aquifer are shallow (100 to 400 feet) except along the western edge and southern part (Table 10). The Kosciusko is exposed across the central and western part of the region. Well yields are small to intermediate from this aquifer. Larger yields are indicated at certain locations as thick sands are available at sufficient depths for large withdrawals. The Kosciusko furnishes water to numerous municipal, industrial and domestic wells in the western part of Area III. Well fields producing from the Kosciusko aquifer are located at Forest (Scott County), Canton (Madison County), Yazoo City (Yazoo County), Como and Sardis (Panola County), Coldwater and Senatobia (Tate County), and Hernando, Olive Branch and Southaven (DeSoto County).

Water levels in the Kosciusko are generally deep in Area III. Some flowing wells are present in the deeper stream valleys. Water levels are up to 200 feet below the surface and even deeper near areas of heavy pumpage. Elevations in Area III are in the 300 to 500 foot range except in the stream valleys.

MINOR AQUIFERS

The Neshoba sand, and Basic City (Tallahatta undifferentiated) are aquifers in the Tallahatta formation (Table 6). The Neshoba sand is present in the central part of Area III. The Neshoba sand is not recognized southeast of Newton County or north of the Yalobusha River in Grenada County. Some water wells are completed in the Neshoba sand but yields are fairly low from this aquifer.

The Tallahatta undifferentiated or Basic City is an aquifer in northern Mississippi. A few wells are completed in these aquifers but are not significant because of the limited use and distribution.

The Winona is a minor aquifer in the north central part of Area III. The Winona overlies the Tallahatta and is beneath the Zilpha. The Winona has a characteristic green color which is from the abundance of the mineral glauconite. Some small wells are completed in this aquifer but generally large quantities of water are not available.

The Cockfield is a potential aquifer across the west central part of Area III. The Cockfield overlies the Cook Mountain formation and is located beneath the Jackson Group. The Cockfield is used for domestic and some municipal wells in parts of Yazoo, Madison, Scott, Newton, Jasper, and Clarke Counties. Numerous small wells are completed in the Cockfield in northern Madison and Yazoo Counties and in Holmes County.

QUALITY OF WATER

Generally, the ground water is of good quality within Area III. Minor quality problems are present in water from several of the aquifers throughout the area but, the problems may be corrected with treatment. Some of the usual quality problems are low pH, excessive iron concentration and carbon dioxide content (Table 11). Treatment of these problems is relatively simple and generally involves aeration, pH adjustment and settling.

Most of the water contains low dissolved solids and is soft. The water is a sodium or calcium bicarbonate type and may be used for most general purposes. Water from wells 500 feet deep or less usually has a low pH (5-6.5 pH) and contains high (50-80 ppm) carbon dioxide.

	Temperature (0°F)						68		67	74		72			20	68		63
	Hd			7.0	6.4	6.7	6.4		6.3	8.3		7.5	5.7		6.1	8.2		5.7
	Total Hardness as CaCO3			31		158	06		5	ŝ		17	18		42	6		28
	TətəT bəvlezziQ zbi lo2						158.75		207.41	181.79		141.20			81.29	294.66		47.60
	(f) struct								0,1						4			
• -	Chloride (CI)	Ē		2		7	22		62	ŝ		6	6		~	7 .,		e
	(tOS) sulfare	f licalth, p					19.42		22.38	30.94								2.80
÷.	(X) mùisseich	te Board o	<u>ounty</u>				2.70	ounty			ounty			ounty	1.50	3.20	ounty	
Area I	(nu) (Na)	Analyses by Mississippi State Board of Health, pun	Attala County				19.50	Carroll County	\$1.91*	65.22*	Choctaw County	53.70*		Clarke County	15,75	108.00	DeSoto County	8.46*
wells ir	(GM) muisaneoM	cs by Miss					3.65		6,08			1.46			1.70	.97		2.92
ater from	Calcium (Ca)	evlenk)					30.04		12.82	2.0		4.41			14.02	2.00		6.41
es of we	(ອງ) ປະສາ			0.5	8.	3.5			5.0	.2		trace	1.5		. .	7		9
analys	Silica (SiO ₂)								6.4	9.6						5.8		
Table 11Chemical analyses of water from wells in Area III.	∵ əteO bəsylanA			11-1-66	9-22-66	1-17-69	11-18-68		8-21-68	8-21-68		7-12-68	3-28-68		2-25-69	11-4-68		10-31-67
Ĭ	Depth			621	541	600	520		426	986		069	96		368	330		470
Table	.on lisw			м Ч	L 2	S 2	U 2		F 1	M 2		F 1	Ί		ΗŢ	r 1		13

	Temperature (0°F) 	į		69	89		80		76	75	82		1				. 6 2	62	62
	Hq			8.4	8.4		8.1	7.0	7.8	7.9	8,5		8.7	7.2	2.9		5,6	5,5	5.3
	Total Hardness es CaCO3			ø	ß			27	trace	10			ນ	350	5		· ico	6	ŝ
	loteT boviczeia sbile2			00. 36E	308.23		375.59	116.44	198.25	756.68	202.94		363,08				15.39	17.63	
	(Flouride (F)				0.4		r.			9									
~	Chiloride (Cl -	(udd		64	ß		40	m	£	ω,	ທ	•,	9	32	11			m	ŝ
ontniued	(toc) status	(Analyses by Mississippi State Board of Health, prm)							21.96		9.38		24.36			·	:		
<u>О</u> Ш	(X) muissolog	tate Board o	Dunty			County		2.50			0	County				Councy	0	0	
in Area	(aV) muiba2	sissippi S	Grenada County	162.54*	125.27*	Holmes County	160.32*	36.00	80.06*	322.49*	84.12	Jasper County	149.45*			Infayette County	1.39	2.00	3.22*
n wells	(GM) muisangoM	rses by Mis			s.			1.70		1.22								. 73	.50
ater fron	Calcium (Ca)	(Anal)		3.20	2.4			8.01		2.00			2.00				3,2	2.40	1.20
ies of w	(94) noil			0.1	ŗ		.2	1.0	.2	.2	0		.2	4.	۶.		0	г.	0
analys	(Silica (SiO ₂)			9.6	7.2				3.2	7.2	4.8		3.2				4.2	4.0	
Table 11.—Chemical analyses of water from wells in Area III.—(Contniued)	Date DatybnA			8-21-68	1-5-67		5-24-68	2-25-69	4-3-67	4-3-67	4-15-69		9-27-67	4-3-68	9-12-68	1 ··	7-29-69	1-13-69	1-9-68
Ţ	Depti			653	466		1,340	626	1,130	1,270	1,396		988	603	810		352	240	190
Table	Well No.			A 2	ТΗ		13	N 1	R 1	U I	νI		10	E 2	L 1	.,.	A 1	B 1	F 1

MISSISSIPPI GEOLOGICAL SURVEY

72

	Temperature (0°F)			69		89			11		66			52	67
-	Hq		•	8,2	6.2	6.7		6.1	7.7	6.1	6.2	6.1		7.3	6.4
-	Total Hordness as CoCO ₃			14	86	40		31	19	ព	6£	38		8	120
-	laicT baviczzia zbilcż			165.88	74.38	103.85		19.96	161.63		66.43			131.99	168.46
وي	Flouride (F)				•,	4		.2							
ntniue	Chloride (CI)	(unit		۲	٢	~		Ŷ	ŝ	60	m	~		ŝ	4
Ŭ I	LO21 statius	of Health,		1.03	9*05	14.32		12.51			8.56	5.43		6.58	8.07
Area II	(X) muissote9	ate Board o	County		2.00		County				3.75	4.50	Country	2.75	1.80
/ells in	(011) muibes	(Analyses by !!ississippi State Board of Health, pum)	Montgomory County	61.68*	7.59	18.38*	Neshoba County	24.63*	44.27*		6.82	11.41	Newton County	38.85	27.46
from v	(gli) muitongali	yscs by "tis		1.94	1.0	2.92		3.64	5.10		4.13			1.94	5.83
water	Calcium (Ca)	(Anal		1.60	13.62	11.21		7.21	16.02		8.81	15.22		12.02	38,46
lyses of	(əl) neil			trace	4.0	4.0		3.0	4	101	2.0	1.0		1.0	2.0
l ana	Silica (SiO ₂ '			911-6	3.2	4.0		3.6	1.2			4.4		3.2	4.8
Table 11.—Chemical analyses of water from wells in Area III.—(Contniued)	Date Dates Dates			8-21-67	7-29-69	89-4-5		5-7-68	S-24-67	5-7-68	2-25-70	7-29-69		3-4-70	3-4-70
<u>–</u>	Atto			530	926	952		069	727	650	390	956		965	1 96
Table	.oM IIw			10	32	11		1 J	1 4	19	К 1 К	24		C J	11

	Temperature (0°F)	[73	74		75								74
	На			6.1	8.4	6.7	6,6		7.9	6.2	7.4	5'2		6.1	6.9		8,5
	Total Hardness as CaCO3]		22		37	ŝ		9	42	9	1		20	12		u
	Tolal bavlattiQ tbito2					140.64	135.70				163,15						465.30
(pər	(7) sbiruoli													0.1			9.
ontnit	Chloride (CI)) (Inste		EE	4	51	11		Ħ	œ	ŝ	ŝ		8	9		ŝ
) - 	Sulfate (SQ4)	of Health,				5,60	8.89				13.50			15.31			3,95
Area	(%) muizzolog	tato Board	Inderdale County					ountry					ounty			County	1.20
wells ir	(aVi) muibo2	(Analyses by Mississippi State Board of Health, pan)	Lauderdo			41.43*	39.84*	Leake County			67.22*		Madison County			<u>Marshall County</u>	196.45
. from	(by) muisongola	yses by Mi				3.16	1.94										
of water	Calcium (Ca)	(And)				9.62	18*8				2.40						2.40
alyses a	(Fe)			3.0	•	1.2	1.8		ų	٩.	ų	7		3.0	.75		r.
al an	Silica (SiO ₂)					3.6	6.4				2.4			2.4			2.4
Table 11.—Chemical analyses of water from wells in Area III.—(Contniued)	Dote bazylonA			1-6-67	10-2-68	12-27-67	12-27-67		11-16-66	10-27-66	7-29-68	8-7-69		9-17-68	8-7-68		10-10-6
e 11	Depih			700	541	647	1,020		849	181	776	254		476	816		1,620
Tabl	°°N 119%]		c 1	C 1	1 1	4 4		Н 1	11	К 1	11		1 0	14		Įd

è, 74 5 33 5 20 5 z Temperature (0°F) 8.5 5.6 6.3 8.9 6.3 6.0 e.3 8.0 6.4 8.3 8.4 8.3 8.4 Hd trace trace °2 C°CO3 œ ŝ ព ä c ى 5 2 54 ŝ 8 Total Hardness 648.42 1087.43 252.06 213.02 390.80 54.50 128.11 sbilo2 44.92 314.59 56.51 lotoT 0.2 ٦. ч. ٩ 4 (1) obinueli Chloride (CI) ى œ ŝ 182 465 ~ Ħ 18 18 12 4 Ħ (Analyses by Mississippi State Board of Health, pym) Table 11.—Chemical analyses of water from wells in Area III.—(Continued) 10.32 31.10 5.43 9.88 (TOS) another 1.00 **Pallahatchie County** 4.0 0 (X) muissoted 0 c • Panola County Tate County Scott County 88.98* 6.54* 18.08* 267.10* 413.39 162.98 10.75 3.75 117.50 102 (DN) muibes 7.29 2.91 1.22 4.13 (6W) muisangoM 13.62 21.63 3,20 9.21 3.20 4.01 6.81 (o) muiste) to 3.0 .05 trace trace 6.0 c Ч. 10.0 5.0 6.0 (əl) ncıl С 7 2 ٩ 2.0 1.2 4.0 3.2 2.4 4.8 (20is) milis 2.4 pozkjouy 12=30=69 7-26-67 6-20-69 2-12-69 11-8-68 5-13-69 2-12-69 9-10-69 1-9-68 1-9-68 2-5-69 5-8-67 Date 1967 1,600 ,170 1,100 .164 240 573 405 560 1,312 1,070 8 Gepth 1,141 522 D 2 R 1 х Г ΓW P 2 503 11 ---64 5 1 0 7 .cN lloW v υ

WATER RESOURCES OF MISSISSIPPI

1 63 69 99 66 99 1 5 Temperature (0°F) 8.2 6.2 5.7 7.8 5.9 7.5 6.0 8.3 5.4 7.7 5.4 . Hq .raoc 14 ى 2000 200 20 Ħ 43 18 4 22 102 æ Total Hardness 238.83 384.62 70.73 66.01 127.06 22.97 51.57 57.81 139.88 1,064.30 spilo2 pavlessig Total 0.5 0.2 7 ŝ (J) abiruoli 16 12 Chisride (Ch ß r œ 1 520 5 m œ 53 (Analyses by Mississippi State Board of Health, ppm) Table 11.—Chemical analyses of water from wells in Area III.—(Contniued) 18.60 18.11 6.58 11.85 11.52 5.60 (POS) applins 3.00 2.00 2.5 Yalobusha County (X) muissato Winston County Webster County 13.25* 99.41* 17.63* 156.89* 32.56* 11.37* 272.47* 14.69 6.95 13.68 (DN) whipos 1.46 3.16 1.93 5.35 2.19 5.59 2.92 2.18 .48 (6W) muisanger 2.00 31.65 2.00 12.01 4.00 5.21 8.81 8 8.01 (a) muista) race 0.75 3.9 - - - 4.0 ۰ ч. о 0.1 4 (ə-ī) ncvi 2.0 6.0 4.4 3.2 2.0 4.8 °, 1.2 1.6 (^ZOis) poilis 10-24-67 10-11-68 10-11-68 bozylonA 11-2-65 8-2-68 5-24-67 3-10-69 5-27-68 3-10-69 3-8-68 1969 aloU 370 2,725 210 ,020 244 412 206 ខ្ល 525 458 354 Depthy НI F 2 К 2 КЗ 10 P 2 Ε.1 Gl г 3 5 X .oN IIow

MISSISSIPPI GEOLOGICAL SURVEY

"Sodium and potassium as sodium.

Water from the Meridian aquifer in northern Grenada, Tallahatchie, and Yalobusha Counties may have excessive iron concentration. The deeper Wilcox generally has good quality of water but the aquifer is not as productive as the Meridian in the northern part of Area III.

Water from the shallow Wilcox and other aquifers may contain excessive iron (1 to 5 ppm). The water from the deep Ripley aquifer (in northern Mississippi) is thought to contain low dissolved solids. Water from the Kosciusko in the central and southern part of Area III may be colored at certain locations. Colored water may be present in some of the Wilcox, or Claiborne aquifers in the central and southern part of the region. The color is derived from organic material such as trees, leaves, roots, etc., or lignite deposited along with the aquifer material. Color may be removed by using alum but the treatment cost is high. Colored water is not harmful to drink and an aquifer may yield colored water at one location and not at another location a few hundred or thousand feet away.

GROUND WATER

AREA IV

Northwestern Mississippi, commonly called the Mississippi Delta, is an important ground-water region. An abundance of ground-water is present at shallow depths and wells yielding large amounts are common throughout most of the region. This region is an important agricultural area and large farms are numerous.

Fresh-water is available in Area IV from 1,000 to 2,000 feet below sea level. The northern part, including parts of DeSoto, Tunica, Tate, Panola, Quitman, and Coahoma Counties, is underlain by fresh-water in the Wilcox Group to a maximum depth of 1,000-1,500 feet below sea level (fig. 2). The southern part is underlain by fresh-water sands in the Tallahatta and Cockfield aquifers to a maximum depth of 1,000 to 2,000 feet below sea level. The base of fresh water is shallowest (1,000 feet below sea level) in an area which parallels the Mississippi River from central Issaquena County to central Coahoma County. Some slightly saline water is encountered in the Cockfield aquifer south of Greenville in the vicinity of Wayside. The principal deep water-bearing Tertiary units in Area IV in ascending order are: the Wilcox Group, Meridian sand of the Tallahatta formation, Tallahatta undifferentiated, Kosciusko (Sparta sand), Cockfield and the Alluvium (Table 12). The shallow (100 to 200 feet depth) Alluvium of Recent age is the most important aquifer for yielding large quantities of water to wells. Multiple aquifers are present at most locations in Area IV and the water quality usually determines which aquifer will be utilized (Table 12 and fig. 8).

The Tertiary deposits are exposed generally to the east of Area IV with a few units exposed along the edge of the Loess hills. The Alluvial deposits blanket the entire area and the topography is flat throughout the Delta. The general dip of the Tertiary beds is toward the west at 15-35 feet per mile and the strike is in a north-south direction. The formations thicken toward the Mississippi River which is the approximate axis of the Gulf Coast Embayment.

WILCOX AQUIFER

The Wilcox aquifer is an important source of ground-water in the northern part of northwestern Mississippi. Fresh water is present in the Wilcox to 1,500 feet below sea level across Quitman and Tunica Counties (fig. 2).

The Wilcox is above the Midway and contains the oldest fresh water aquifers in the region. The depth to the top of the Wilcox is from 700 feet below sea level at Crenshaw to 1,100 feet below sea level due west at the Mississippi River. Most wells are completed near the base of the unit.

Wells in the Wilcox supply water to several towns in Area IV, particularly the northern part of the Delta. The City of Memphis has wells and well fields completed in the Wilcox aquifer. The Wilcox supplies water to Tunica in Tunica County, Lake Cormorant in DeSoto County, Sledge in Quitman County, Crenshaw in Panola County, Coahoma Junior College in Coahoma County, and Greenwood in Leflore County.

Depth of Wilcox wells is from 1,700 to 1,860 feet at Tunica. Two wells are 1,404 and 1,420 feet deep at Crenshaw which is on the eastern edge of the Delta. A well 1,560 feet deep located

ea IV.	
urces in Are	THICKNESS
Table 12.—Stratigraphic column and water resources in Area IV.	EDA CUETELL CEDIEC COCID STRATIGRAPHIC THICKNESS
ic column	
atigraphi	C ED IEC
1 2Stre	CVE TEN
Table	te v

			<u> </u>	-						1		
WATER RESOURCES	Yields large volumes of water to shallow wells (less than 200 feet) throughout most of the area. Large copecity wells yielding 3,000 to 5,000 gpm are common in the area. This aquifer supplies sumerous irrigation, industrial and some municipal water systems. Recently (1970) a large number of commercial catifish farm supply wells have been installed. Quality of water from this aquifer is poor.	An aquifer in parts of Warren, Sharkey, and Yazoo Counties. This aquifer supplies a number of domestic wells in these counties. Quality of water is generally good.	Not an aquifer.	Nat an aquifer.	Supplies a large number of wells in the southern part and along the Mississippi River. The municipal supply art Greenville, Wayside, Leland, Lamant, Scott, Benait, Rosedale and Gunnisan is from this aquifer. Quality of water is fair to good. Some of the water is amber colored.	Not an aquifer.	 An important aquifer throughout most of the area. Numerous municipal, industrial, and domestic wells are completed in this aquifer. Quality of water is generally good. 	Not an aquifer.	Nat extensively used as an aquifer.	An important aquifer throughout most of the central and northern part of this area. Most of the wells are for domestic use and a few langer wells untilize this aquifer. This aquifer is difficult to separate from the underlying Meridian sand, when both units are sands. Quality of water is generally good from this aquifer.	Supplies a large number of wells throughout the entire area. A number of municipal, industrial, and domestic wells are completed in this aquifer. Quality of water is good.	An important aquifer in the routhern and eastern part of the area. Large volumet of water are pumped from this aquifer for municipal and industrial purposes. Quality of water is good.
THICKNESS (feet)	0-200	150-200	500	20-30	350-500	170	1 00- 800	50-200	35-50	170-400	175-250	600-700
STRATIGRAPHIC UNIT	Allovium	Forest Hill	Yazoo clay	Moodys Branch	Cockfield	Cook Mountain	Kosciusko	Zilpha	Winona	Tallahatta Dudiffer entiated	Aeridian sand	Undifferentiated
GROUP				100000		L	L	Claiborne				Wilcox
SERIES	Holocene	Qligocene Eocene										
SYSTEM	Quarternary Holocene						Icriary					
ERA					piozons.	>						

at Lake Cormorant is completed in the Wilcox. Most domestic and other municipal wells in this area are completed in the shallower Kosciusko or Meridian sand aquifers.

Well yields from the Wilcox aquifer are from small to moderate. Yields from the Wilcox average about 200 gpm in the existing wells. Higher yields may be possible from the Wilcox as municipalities outside the area are pumping 500-550 gpm from individual wells (Table 13).

Table	Table 13.—Records of selected wells in Area IV.	ed well	ls in A	rea IV.							
3	Well No.: . Numbers correspond to those on well-lorniton maps, cliemical-analysis tables and pumping test tables.	well-lacal test tables,	ion maps,			2	Elevation: Elevations determined mostly from tapoyaphic maps having contour intervals of 10 ar 20 feet.	ns determi	ion: Elevations determined mostly from topospa maps having contour intervals of 10 or 20 feet.	upojiaphic) feet.	
¥ ¥	Majority of wells are rotary drilled. Water Level: M, Measured; R, Reported.					2	Use of Well: D, Domestic: I, Industrial; IR, Irrigation; N, None: O, Observation; P, Public Supply; S, I, Test.	mestic; I, , Observa	Well: D, Domessic, I, Industrial; IR, Irrigation; N, None; O, Observation; P, Public Supply; S, Stock; I, Test.	Irrigation; upply; 5, 5to	cka
						-	Remaiks: C, Chemical Analysis; O, Observation Well; .P, Pumping Test.	cal Analy: est.	ii; O, Observat	ion Well;	•
					Elev. of land	V/at Above (+) or below	Water Lovel . e (+) low				
Vielí No.	Owner	Year Drilled	Depth (ft.)	Casing Diameter (in.)	surface datum (fr.)	land surface (fr.)	Date of Measurement	С,	Yield Gallans per Minute	Date	Remarks
·				8	Bolivar County	ы					
81	Town of Alligator	1969	1,300	8, 4	155	G.L.	1969	4	150	1969	
E 2	Town of Mound Bayou	1969	1,310	7	146	9	1969	4	200	1969	
M 4	Baxter Inboratorica	1961	796	9	761	28	1961	н			
N 2	Town of Cleveland	1969	828	18, 12	135	38	1969	6 .	1250	1969	
ΡŢ	Dan Silignan	1965	1,042	4	127	SI.	1965	٩			
17 C	Chockaw Nator Association	1969	1,640	8	122	¢10	1969	4	150	1969	υ
				ð	Coahoma County	ы					
A 1	Town of Lulu'	1968	1,063	10, 6	180	5	1968	P4	200	196 8	
B 1	Town of Friars Point	1970	: 815	8, 6	175	28	1970	ρ,	400	0461.	
C 1	Conforms Utilities Association	1969	1,075	8, 4	175	91	1969	A i	150	1969	υ
13	W. P. McCaughan	1965	1,151	4, 25	173	÷	1965	۵			
ТX	J. H. Prott	1963	301	74	163	15	1963	۵	1200	1965	
01	Roy Flowers	1965	952	3, 2	160			۵			

IV.—(Continued)
Area
<u>⊇</u> .
wells
selected
ę
13.—Records
Table

:				Casing	Elev. of "and surface	<u>Water</u> Above (-) or below land	Water Level re (.) tlow		Yield		
∎ ²	Owner	Year Drilled	Depli. (fl.)	Diameter (in.)	datum (ft.)	surface (fi.)	Date of Measurement	Use	Gallons, per Miñute	Date	kemarks
				Hund	Hurphreys County	ы					
E.	C and M Water Association	1970	8/6	8, 6	105	12	1970	A	150	1970	
C 1	D. D. Fielder	1967	158	4, 2	115	+12	1967	Ð	20	1967	
21	H. C. Parks	1967	573	4, 2	105			A	20	1967	
6 2	L. B. Rerring	1968	1,505	4, 25	110	+	1968	a	50	1968	
КЛ	Tom of Louise	1967	807	80	100	36	1967	ρ,			
7 ¥	Bourd of Supervisors	1966	1,023	4, 2	103	8	3960	н	25	1966	
				Issz	Issaguena County	ম					
B 2	Ptr. Mabus	1968	958	4, 25	100	7	1968	٩			
C I	Barold Asimore	1970	926	4, 2	100	19	1970	9	60	1970	
				<u>Let</u>	Leflore County	۲					:
A 2	F. T. Loavell	1969	1200	4, 3	130	+	1969	9			
31	B. B. Provine	1967	800	4, 3, 2	140	+	1967	٩	25	1966	
C 1	Schlater Witer Association	1966	1,132	8	130	+	1966	۵.	100	1966	U
E 1	B. L. Ewrott	1964	662	3, 2	130	+	1964	٩			
61	Four-Pifths Plantation	1969	920	4, 3, 2	135	+	1969	٩			
Н 2	T. Y. Gardner	1968	735	4, 3, 2	120	+	1968	9			
32	G. F. Aust	1965	1,162	4, 2	120	+	1965	٩			
L 3	Charan Subdivision	1964	40 2	4,3,2	124	+	1964	P			
I N	Morgan City Community Water Assoc.	1966	1,206	9	121	+42	196	4	75	1966	υ
0 2	Charles Neyers	1965	565	3, 2	122	+	1965	٩			

				Coting	Elev. of !and surface	Above (-) or below land	varier Level below d		Yield	_	
No.	Owner	Year Drilled	Depti (f1.)	Diameter (in.)	datum (ft.)	surface (ft.)	Late of Mcasurement	ů,	Gallons per Minute	Date	Remarks
				큉	Quitman County	2					
7 I V	Norfleet Utility Association	1968	1,498	8, 4	ц	+	1968	Pi	150	1968	υ
	Darling Water Association	1961	1,529	8, 4	168	24	1961	4	150	1961	υ
1 2	Ned Star	1969	1,383	4, 3	165	+	1969	A	20	1969	
с Т З	Town of Marks	1961	1,470	12, 8	163	+30	1968	A	500	1968	υ
E 7	Bigfield Water Association	1967	655	8, 4	162	9 +	1967	Ω.	150	T96	U
нг	Robert Coo	1965	926	4, 3, 2	721	+	196	A	ม	1965	
				2	Sharkey County	শ্র					
7 T	R. P. Casselli	1961	200	4, 2	712	36	1967	ŋ			
сı	M. C. Bring	1961	1,830	4, 2	306	÷	196T	A	22	1967	
G 1	Bellgrade Lumber Company'	1965	976	4, 2%	Tot	G.L.	1965	н			
G 2	Town of Cary	1965	1,105	6, 4	103	8	1965	р.			υ
63	Bellmont Gin Company	1968	566	4, 2		2 +	1968	н			
				Sunt	Sunflower County	전					
81	Clayridge Planting Company	1968	1,176	4, 3	146	г	1968	н	0	396 Ľ	
F 2	Town of Buleville	1968	1,356	8	135	ະ +	1968	A	500	396L	
1 1	Vince Muzzi	1961	575	4, 2	125	18	1961	a	97	1961	
L J	Turnor Avant	1967	1,062	4, 3, 2	123	+	1961	ò	8	1961	
T N	city of Indianola	1966	1,748	21	122	+29	1966	4	926	1966	υ
N 2	City of Indianola	1968	1,655	12, 8	123	+29	1968	4			
											•

Table 13.—Records of selected wells in Area IV.—(Continued)

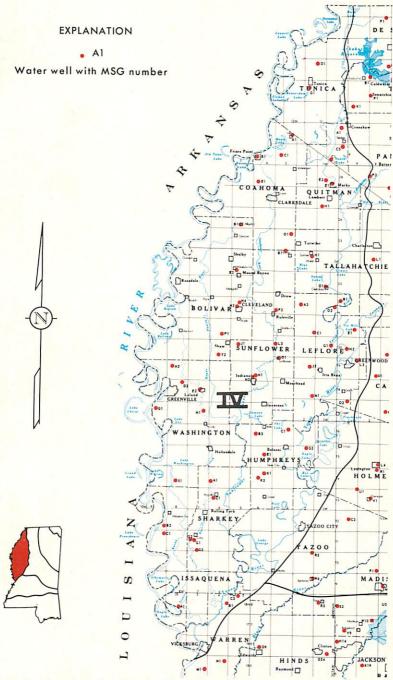


Figure 8.—Location of selected wells in Area IV.

IV.—(Continued)
Area
⊒.
wells
selected
4
13.—Records
Table

					Elev. of lend	V/ate Above (1) or below	Vlater Level re (r.) clow				
Well No.	Owner	Year Drilled	Dapth (ft.)	Cosing Diameter (in.)	surface datum (ft.)	land surface (ft.)	Dule of Maosurement	U,e	Yicld Gallons per Minute	Date	Remarks
				allar	Tallahatchie County	mty					
ц	Highery Subdivision	1967	1,004	6, 4, 2%	150	ŝ	1967	۵.			
01	Town of Glendora	1967	874	8, 4	145	•	1967	۵.	100	1967	υ
20	John Sardors	1967	639	4, 3, 2	137	+	1967	۵	35	1967	
				21	Tutica County	L.					
D 1	Hollywood Water Association	1968	1,830	7, 4	195	φ	1968	G.	100	1968	υ
G 1	Town of Turica, Industrial Park	1969	1,755	10	190	n	1969	84	400	1969	
				War	Warren County						
1 γ	Eaglo lake Water District	1968	154	10	95	16	1968	а.	200	1963	υ
B 1	Allied Chemical Company	1961	143	6, 4	105	21	1967	н	20	1967	υ
c c	C. H. Mayreaux	1969	1,012	2	87	÷	1969	2			
				(USE)	Washington County	ţ,					
A 2	Winterville Water Association	1968	504	8, 4	134	58	1968	e,	150	1968	υ
D 2	City of Greenville	6961	999	18, 10	120	76	1967	<u>.</u>	1200	1969	υ
e : 61	City of Icland, Mell No. 3	1961	646	18, 10	125	7	2961	۵.			U
61	National Packing Company	1961	568	10, 6	115	63	1967	н	500	1961	
Н 1	Harry Branton	1968	011	4, 2		57	1968	۵	30	1968	
s 1	Glen Alan Kater Association	1967	1,006	ŝ	110	+28	1 1961	۵.	175	1967	υ

Thickness of the Wilcox ranges from 650 to 700 feet in the northern part of the Delta. The Wilcox strata are composed of interbedded clay, silt, sand, and thin tongues of limestone and calcareous-cemented sandstone. Lignite or organic material is commonly interbedded with the clay and may occur as individual beds. Thick to thin sands separated by clay layers are typical in the Wilcox.

Water levels are relatively high in wells completed in the Wilcox aquifers. Water levels are 8 to 56 feet above the land surface in most of the Area. A well 1,680 feet deep at Greenwood in the Wilcox had a reported water level of 95 feet above land surface in 1938. Wells completed in the Wilcox aquifers in northern DeSoto County have water leve's 15 to 20 feet below land surface. This lower water level is a result of the large withdrawals from the Wilcox in the Memphis area.

CLAIBORNE AQUIFERS MERIDIAN SAND AQUIFER

Most of northwest Mississippi is underlain by the Meridian sand aquifer of the Tallahatta formation. The base of fresh water ranges from 1,000 to 2,000 feet in the Meridian sand in the central and south central part of Area IV. The Meridian sand is the basal unit in the Claiborne Group and overlies the Wilcox Group. Sufficient depths to penetrate the Meridian sand range from 700 feet below sea level at Greenwood, in the eastern part, to 2,000 feet at Leland, in the western part. The base of the Meridian sand ranges from 1,100 feet below sea level at Tunica in the north to 2,000 feet at Yazoo City in the south.

A large number of industrial, municipal and domestic water supplies in northwestern Mississippi are from the Meridian sand aquifer. The Meridian sand is from about 250 feet thick in the western part of the region to 175 feet in the eastern part. Generally, the unit is composed of sand with small amounts of silt and clay present. The sand has been replaced with sandy clay or clay at a few locations in the region. The dip and strike of the beds are similar to the underlying Wilcox.

The Meridian sand aquifer has the potential of supplying large yields to wells throughout most of northwestern Mississippi. Pumping rates of wells developed in the Meridian sand range up to nearly 3,000 gpm.

Water levels in the Meridian sand aquifer are above the land surface or near the land surface in Area IV. A well in the Meridian sand at Eden, Yazoo County, which is 1,735 feet deep, had a water level of 140 feet above the land surface in 1954. Water levels are at land surface or slightly below in wells completed in the Meridian sand in the vicinity of Greenwood where large withdrawals are from this aquifer.

TALLAHATTA, UNDIFFERENTIATED AQUIFER

The Tallahatta is comprised of Neshoba sand and the Basic City, but for the purpose of this study these are included in the Tallahatta, undifferentiated. The Tallahatta, undifferentiated is not as consistant in thickness or areal distribution as the underlying Meridian sand. The sands range from thin to thick and usually are fine- to medium-grained. The unit is composed of clay or claystone with very little sand at a number of locations.

Some municipal and industrial wells are completed in the sands of the Tallahatta, undifferentiated. Generally, the aquifer is the source of domestic water supplies throughout northwestern Mississippi.

Water levels in these aquifers are about the same as the underlying Meridian sand. Most wells flow above the land surface.

KOSCIUSKO AQUIFER

The Kosciusko formation contains thick water-bearing sands throughout much of northwestern Mississippi. Municipal, industrial and domestic wells are completed in the Kosciusko aquifers in the region. The base of fresh water is present in the Kosciusko or Cockfield in the area that parallels the Mississippi River to about Coahoma County in the north.

The Kosciusko formation overlies the Zilpha and underlies the Cook Mountain formation. The Zilpha consists of dark-brown clay and the Cook Mountain is a clay or marl and neither unit is an aquifer. The Kosciusko consists of several sands separated by clays and some quartzite. The sands are not continuous over a large area. The Kosciusko and other members of the Claiborne Group usually contains more sand in the northern part of the region.

MISSISSIPPI GEOLOGICAL SURVEY

Depth of the Kosciusko varies from directly underlying the Alluvium in the vicinity of Greenwood and along the eastern edge of the Delta to 1,600 feet below sea level north of Vicksburg in the southern edge of the Delta. Wells sufficiently deep to penetrate the Kosciusko are from 400 feet below sea level at Tunica in the north, to 2,400 feet north of Vicksburg, in the south. The base of the Kosciusko in the west is from 600 feet below sea level at Friars Point in the north to 1,200 feet at Mayersville in the south. Thickness of the Kosciusko ranges from 800 feet in the extreme southern part to about 500 feet over the remainder of the area. Erosion of the top of the Kosciusko has taken place along the eastern edge of the region and the thickness is 100 to 200 feet.

Water levels are generally below land surface in the Kosciusko and flowing wells are limited to the extreme southern part of the region. Heavy pumpage throughout the area has caused the once flowing wells to have water levels 10-30 feet below land surface.

COCKFIELD AQUIFER

The Cockfield formation is an important source for municipal, industrial, and domestic water supplies. This includes a narrow area bordering the Mississippi River from central Washington County to Coahoma County. The Cockfield underlies other areas of northwestern Mississippi but usually is shallow and in contact with the overlying alluvial deposits. Eight municipalities or communities along the Mississippi River in the central part of Area IV have wells completed in the Cockfield aquifer (Wayside, Greenville, and Leland in Washington County, and Lamont, Scott, Benoit, Rosedale and Gunnison in Bolivar County).

Well depths in the Cockfield are 430 feet at Wayside (Washington County) to 469 feet at Gunnison (Bolivar County). A well in the Cockfield is 657 feet deep at Benoit (Bolivar County) and the average depth is 500 feet at Greenville (Washington County). The lower part of the Cockfield contains high total dissolved solids in the vicinity of Wayside and slightly south of Greenville along the Mississippi River.

Thickness of the Cockfield is about 500 feet along the Mississippi River but thins south of Greenville. The Cockfield consists of clay, with lignite beds and sands of varying thickness. The clay is usually lignitic and irregularly bedded.

Water levels in the Cockfield throughout much of the region are from 10 to 30 feet below land surface. Water levels in the Greenville area are 70-75 feet below land surface because of the heavy withdrawals.

ALLUVIAL AQUIFER

The Mississippi River Alluvium is one of the most prolific and widespread aquifers in northwestern Mississippi. Alluvial deposits blanket and underlie the entire Yazoo Delta.

Thickness of the alluvial deposits are from a few feet to 200 feet thick and average about 140 feet (Harvey, 1956). Generally, the thicker alluvium extends parallel to the Loess or Bluff Hills, and the thinner alluvium extends along the Mississippi in Washington and Bolivar Counties (Brown, 1947, p. 54).

The alluvium is composed of silt, clay and loam in the upper part and coarse sand and gravel in the lower part. Thickness of the lower highly permeable zone averages nearly 100 feet over most of the region.

Well depths are from 140 feet up to 200 feet in the Alluvial aquifer. Yields from this aquifer are exceptionally high with individual wells producing up to 5,000 gpm. Most large diameter industrial, municipal and irrigation wells yield from 1,000 to 3,000 gpm. Well fields in the alluvial aquifer furnish water to several municipalities and electrical power generating plants in Area IV. Numerous irrigation wells have been completed in Area IV and recently a large number of wells for commercial catfish farms are being installed in the Delta.

Water levels are shallow in the alluvium and are from 5 to 30 feet below the surface. Deeper water levels exist near areas of heavy pumpage as in Bolivar County. Water levels are cyclic and reflect climatic conditions of the area. Water levels recover seasonally in the Alluvium whereas water levels in the deeper Tertiary aquifers are slow to react to climatic changes. The Alluvium is generally replenished or recharged by the winter and spring rains.

QUALITY OF WATER

Generally, the deeper aquifers contain the better quality water. The deeper Tertiary aquifers are used for most municipal and domestic water supplies throughout Area IV. Irrigation, cooling water and industrial water supplies are from the shallow Alluvial aquifer. The water from the Alluvial aquifer is of poor quality. Generally, the water from the Alluvium contains excessive iron and carbon dioxide content, and the pH of the water is low. Iron concentrations are up to 20 ppm in some of the water from the Alluvium (Table 14).

Iron concentrations may be a problem in some of the deeper Tertiary aquifers at some locations. At Greenville and Leland the water from the Cockfield is an amber color.

GROUND WATER

AREA V

Central Mississippi is underlain by the Wilcox, Kosciusko, Cockfield, Forest Hill, Catahoula, Hattiesburg and Citronelle aquifers (Table 15). The Claiborne Group includes the Kosciusko (Sparta) and the Cockfield aquifers which are important across the northern part of this area. The Forest Hill is an important local aquifer in the vicinity of Jackson. Toward the south the Claiborne aquifers thin, permeability decreases, and color is more prevalent. Numerous municipal, industrial and domestic wells are completed in either the Cockfield or Kosciusko aquifers across Central Mississippi (Table 16 and fig. 9).

The Wilcox is fresh along the northern border of Area V. The deepest water in the State is present in central Smith County (below 3,000 feet) in the Wilcox. The development of the Wilcox aquifer has been limited by the extreme depth, 2,000-3,000 feet, and the availability of aquifers at shallower depths. A few small wells have been completed in the top of the Wilcox aquifer in Hinds, Madison and Rankin Counties, but nothing significant. The Wilcox is shallower in western Rankin and eastern Hinds County because of the affect of the Jackson dome. The potential of the Wilcox is large in these areas.

Miocene aquifers which include the Catahoula and Hattiesburg are relatively shallow and underlie the southern, part of

3 80 2 78 28 89 (1°C) onutorogenoi 8.2 8.0 8.3 8.3 8.3 8.4 8.4 8.9 8.3 Hq trace trace 2000 200 20 0 e 9 0 e 0 Total Hardness 496.77 444.52 238.49 458.75 128.51 208.80 spiles paviessia loteT ÷.0 'n ņ Ч (1) obtructi (D) appello Ц 106 107 ę 8 35 225 α (Analyses by Mississippi State Board of Health, pam) 3.29 (FOS) atailos 2.25 2.75 2 (X) muissatof Table 14.—Chemical analyses of water from wells in Area IV. Coahama County Leflore County Outman County Sharkey County Bolivar County 190.23* \$8.67* 54.88* 203.32 98.0 176 (nN) mulbes ÷ (Byy) whisenboyy : : 1.20 1.2 (o) muisto) : raco 9 នុ 02 1.0 .. 0.1 э.о ņ (od) nov 18.4 5.6 2.0 8.8 . 2.4 į (Silica (SiO2) Ç, 12-11-68 bosylonA 11-18-68 12-20-67 10-8-69 6-28-65 4-29-68 6-3-68 1-9-68 1969 oto 1,105 1,640 1,075 1,498 1,132 1,206 17470 655 1,529 Depth . ₹7. Ċ **C** 1 T N ΤV 51 Ч E 2 G 2 . *en IIPM

WATER RESOURCES OF MISSISSIPPI

89

...

ł

	Temperature (3°F)				11		74		76					ч		72	81	
	Hd	1		8.2	8.2		8.1		8.4		6.8	8,5		8.6	8.5	8.6	8.6	
	Total Haráness as CaCO ₃			trace	o		10		trace		410	trace		•	trace	•	trace	ium as Na
	Total bovloved sbilc2			471.31	269.44		307.12		170.85			575.92		277.46		350,00	383.71	"Sodium and Potassium as Na
	(F) (F)			0.4								0.4			٩.	8.	8.	*sodium
	Chloride (CL)	 		16			25		14		9	46		28	35	40	88	
inued)	(202) stailuz	(Analyses by Mississippi State Board of Health, pm)					8.88					66.17						
(Cont	(X) muissotc9	te Board of	County			ie County	2.0	County	0	County			n County					
Area IV.	(DV) muibe2	issippi Sta	Sunflower County	197.21*	#66/80I	Tallahatchie County	122.38	Tunica County	69.82	Warren County		240.03	Washington County	118.01*		148.34*	280.10*	
wells in	(_E M) muisangoM	es by Miss									40.10							
er from	Calcium (Ca)	(Analys					4.0				98,16							
of wat	(Fe) (Fe)			0.6	.2		.2		۳.		10	г.			ŗ	0	0	
inalyses	(² Ois) Silica			14.4	17.2		4.4		2.8			2.4		1.2		2.0	4.0	
Table 14.—Chemical analyses of water from wells in Area 1V.—(Continued)	oto bożyłonA			2-6-68	9-7-65		1969		4-15-69		9-18-68	1-4-68		7-12-68	7-14-69	7-12-68	7-12-68	
14. - -C	Deptis			1,748	1,270		874		1,830		154	841		504	666	646	1,006	
Table	well No.			I N	01		01		D 1		A 1	B 1		A 2	D 2	E 2	s 1	

MISSISSIPPI GEOLOGICAL SURVEY

~
Area \
.⊆
resources
water
puo
column
raphic
Ē
Ħ
tra
5
പ്
~
Table

				·					r	<u> </u>	Г		r	Г	Г	
WATER RESOURCES	Not an extensive aquifer. Some local domestic wells are completed in this aquifer. Large yielding wells may be possible at certain locations clong the major streams. Wells yielding up to 2,000-3,000 gpm are possible along the Mississipi River in Warren, Jefferson, and Adams Countier. Water quelly its generally poor from this quifer.	Same local domestic water supplies are completed in this aquifer. May be a potential source for large ground water development at isolated locations.	Supplies municipal, industrial and domestic water supplies in the vicinity of Crystal Springs and some other locations. The water usually has low pH and low dissolved solids content.	An equifer in the southwestern part of the area. The wells are generally shallow and mostly used for domestic purposes. Quality of water is fair to good in this equifer. Iron concentra- tion and low pH may be problems at some locations.	An important aquifer throughout the southern half of the area. Numerous municipal industrial, and domestic water wells are completed in this aquifer. The deposit is typically lens-staped near the outcap and a particular sand is not continuous over a large region. Quality of water is good.	Generally not an aquiter. A number of shallow domestic wells are completed in certain zones (Mint Spring) across the State south of the outcrop.	Supplies large volumes of water to wells in the vicinity of Jackson. A number of large water supplies utilize this aquifer in western Rankin and Hinds Counties. Quality of water is good, but color is a local problem.	Generally not an aquifer. A zone near the bottom supplies domestic and rural water supplies in eastern Wayne County.	Generally not an aquifer. Some domestic wells utilize this aquifer south of the outcrop, particularly in Yazoo County.	An important aquifer in the northern half of the area. Numarous water supplies are from this equifer acress the area. Quality of water is generally good. High color, iron con- centration and hydrogen sulfide is a problem at some locations.	Not an aquifer.	An important aquifer across most of the area. Numerous municipal, industrial and domestic wells yield large volumes of water from this aquifer. Quality is good in the northern and central part of the area. Colored water and low permoability are present at some locations in the southern part of the area.	Not an aquifer.	Not an aquifar.	Not an aquifer.	A potential aquifer tamediately south of the northern boundary line of the area. The avail- ability of shalower aquifers and the depth has limited the number of wells drilled in this aquifer. A few wells have been Arilled in the vicinity of Jackson and northern Rankin County. Quality of water is probably good in the northern part of the area. Some of the water may be colored at particular locations.
THICKNESS (feet)	0-100	0-100	0-100	0-200	0-900	091-0	0-250	0-525	1 0-45	80-550	1 00-250	110-800	250-500	10-40	75-300	1150-3500
STRATIGRAPHIC UNIT	Alluvium	Terrace Deposits	Citronelle	Hattiesburg	Catahoula	Undifferentiated	Forest Hill	Yazoo clay	Moodys Branch	Cockfield	Cook Mountain	Kosciusko	Zilpha	Winona	Tal lahata	Undifferentiated
GROUP						Vicksburg		lacteon				Claiborne				Wilcox
SERIES	Holocene	*uaso	dies,		Miocene		Oligocene					Eocene				
SYSTEM	Quaternary								Tertiary							
ERA						5	iozoneC									

Table	Table 16.—Records of selected wells in Area V.	ed well	s in ⊿	Vrea V.		:	•		•		
ä	Vell No. : Numbers correspond to those on well-location maps, chemical-onalysis tables and pumping test tables.	well-locati test tables.	on maps,			•	Llevation: Llevations determined mostly fram topoyraphic maps having contour intervals of 10 ar 20 feet.	ans determin sontour inte	iou: Elevarions determined mostly from topogra maps loving contour intervals of 10 ar 20 leet.	təpoyraphic 20 feet.	
W X	Majority of welts are rotary drilled. Vater Level: M, Measured: R, Reported.		·		·.		Use of Wellt: D, Domestict, I, Industrialy, IR, Iurigation; N, Namer O, Observation; P, Public Supply; 5, Stack; T, Test.	omestic; I,), Observal	, Industrial; IR, tian; P, Public	, trigation; Supply; S, Si	lock;
						_	Remarks: C. Chemicel Analysis; O, Observation Viell; P, Pumping Test.	ical Analys icsi.	ils: O, Observe	stion Viell;	
						N/A	Water Level		. .		ĺ
	•				Elev. of land	Above (I) or below	÷.		Nala V		
Well No.	Owner	Year Drilled	Depth (1.)	Diameter (in.)		Surface (fr.)	Dale of Measurement	Use	Gallons per Minute	Date	Remarks
				~1	Adems County	ਸ਼					
C 1	International Paper Company Well No. 26	1970	156	26, 20	65	3	1970	I	3,500	1970	
D 1	Mars County Water Association	1966	542	77	260	155	1966	4	500	1966	U
6 1	Adams County Water Association	1966	267	10	220	62	1966	4	300	1966	υ
6 2	Adams County Water Association	1966	267	10	260	62	1966	4	300	1966	
				ð	Claiborne County	nty.					
6 Q	Natchez Traco Parkway	1968	515	9	288	209	1968	۴			U
5.3	Arderson Walker, Jr.	1968	116	4	225	88	1968	٩	e	1968	
G 10	C., S. and I. Water Association	. 8961	405	9	250	170	. 8961	۵.	150	1968	υ
IN.	Pattison Water Association	1967	220	2	102	83	. 1961	ħ			
N L	Hermanville Nator Association	1966	480	10, 6	224	115	1966	۵.	180	1966	ບ

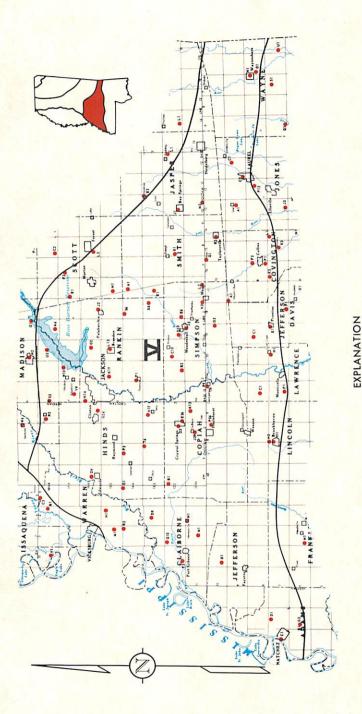
MISSISSIPPI GEOLOGICAL SURVEY

:

•

92

/.—(Continued)
~
Area
⊒.
wells
selected
ę
16.—Records
Table


			v	Cesing Cesing	Elev. of land surface	V/ate Above (1) or below land	Vlater Level e (1) flow		Yield	_	
V: ell No.	Owner	Year Drilled	Depth (ft.)	Diameter (in.)	datum (ft.)	surface (fr.)	urface Dute of (ft.) Measurement	Use	Gallans per Minute	Dote	Remarks
				8	Copiah County						
B 1	Redtown Water Association	896t	250	10, 8	86T	ч	1968	4	162	1968	υ
D 3	City of Crystal Springs Well No. 3 1949	1949	801	8	467	72	1968	4	185	1968	U
Е 36	Blain Sand and Gravel Company	1968	120	77	470	84	1968	I	554	1968	
J 29	Town of Gallman	1965	215	8, 6	472	82	1965	4	150	1965	U
K 12	Harmony Ridge Water Association	1967	200	9,6	480	116	1967	۰.	180	1967	IJ
95 d	City of Hazlehurst	1966	300	12	435	109	1968	C.	350	1966	U
R 9	Town of Georgetown	1965	192	6, 4	236	+	1968	۵.	100	1968	υ
				Covi	<u>Covington</u> County	ы					
A 1	W. E. Blain and Sons	1966	240	12		8	1966	н	1000	1966	
11	Cold Springs Water Association	1968	825	10, 6	370	157	1968	4	150	1968	
F 2	Salem Water Association	1970	632	10, 6	380	126	1970	G.,	212	1970	U
K 5	Mississippi Nighway Dept., Rest Area No. 17	1968	410	7	791	99	1968	6 4	Ħ	1968	υ
r 1	Transcontinental Gas Pipeline Co.	1968	194	ព	438	230	1968	н	1000	1968	
				뀖	Hinds County						
6 Q	Northwest Hinds Nater Association	1968	1,077	10	290	206	1968	۵.			
G 24	Metropolitan Water Company Well No. MD	1967	1,020	16	404	288	1968	e.	600	1967	υ
11 :	Metropolitan Water Company Well No. NB	1968	746	16	359	243	1968	۵.	608	1968	υ
01	liuhhard Water Association	1968	1,280	8, G	220	901	1968	۵.	90	1969	

				Casing	Elev. of land surface	Viate Above (i or below land			Yield		
Well No.	Owner	Year Drilled	Depth (ft.)	Diameter (in.)	datum (ft.)	surface (ft.)	Date of Measurement	°,	Galions per Minute	Dote	Remarks
				HInda Co	Hinda County (continued)	inued)					
БЗ	Oakley Training School	1966	1,080	4	195	70	1966	۵.	ŝ	1966	
T 6	South Central Nater Association	1968	530	16	360	130	1968	٩	400	1968	
V 17	South Central Water Association	.1969	426	16	260	42	1969	۵.	510	1969	υ
				RI.	Janper County	ы					
J 1	City of Bay Springs	1966	1008	ជ	442	176	1966	£.	1005	1966	U
N 2	Stringer Water Association	1965	619	8	405	132	1966	e .	215	1969	υ
				Jott	Joffamon County	ង					
D 1	Lormen Community Water Association 1966	1966	375	8, 4	300	170	1966	G	125	1966	υ
				<u>Jeffers</u>	Jefferson Davis County	ounty					
c 1	Double Pend Water Association	1969	320	8	520	165	1969	Α.	200	1969	υ
E 1	Town of Prentise, Test Hole No. 1	1969	525	4, 2	346	18	1969	۵	83	1969	
					Jones County						
A 1	Sozo Water Association	1969	470	6, 4	315	86	1969	۵.	138	1969	υ
c 1	Erata Water Association	1967	257	6, 4	325	156	1967	۵.	144	1968	
C 2	City of Laurol, 12th St. Tank Well 1970	1970	410	18	320	227	1970	۵.	412	1970	

Table 16.---Records of selected wells in Area V.---(Continued)

94

MISSISSIPPI GEOLOGICAL SURVEY

Water well with MSG number

• Al

Figure 9.--Location of selected wells in Area V.

V.—(Continued)
ls in Area
selected wel
16Records of s
Table .

					Elev. of !and	V/ate Above (+) or below	Vlater Level e (·) flow				
		;	į	Cosing	surface	puol			Yield		
Na.	Owner	Drilled	(it.)	Unameter (in.)	(ft.)	surface (ft.)	Date of Measurement	Ŭ,e	Gallons per Minute	Date	Remarks
				WEI	Lawrence County	м					
c I	Sontag-Wanilla Water Association	1967	837	10	281	60	1967	D .	201	1967	υ
F 1	Lawrence County Water Association	1967	864	8		232	1967	n	150	1967	U
п 1	Town of Silver Creek	1965	797	9	OBE	ŝ	1966	4	115	1966	υ
				<u>Line</u>	Lincoln County						
н	City of Brookhaven	1963	413	18		165	1963	۵.	500	1963	υ
Н 2	Lincoln County Water Association	1969	412	12	485	188	1969	۵.	200	1969	U
				iber.	Madison County						
R 3	Town of Flora	1968	1,228	12, 8	260	137	1968	4	558	1968	υ
S 2	Cedar Hill Lake Club	1969	1,146	4, 2	375	178	1969	G ,			υ
U 2	Pearl River Nater Supply District, Haystack Landing	1970	502	4, 2	300	86	1970	£	21	1970	
6 ۷	Livingston Road Water Association	1968	700	و	402	260	1968	۵.	60	1968	5
W 10	Pearl River Water Supply District, 1969 Twin Harbors Subdivision	1969	610	10	308	86	1969	£ .	307	1969	υ
				22	Rankin County						
4 4	Pisgah Water Association	1966	382	69	385	142	1968	۵	164	1968	υ
G 2	Langford Water Association	1967	778	e)	415	222	1967	۵.	200	1961	U
1 5 7	Town of Pelahatchie	1962	766	10	360	761	1962	۵.	490	1969	U
K 19	Metropolitan Water Compuny Well No. EB	1968	198	16	287	150	1968	ο,	602	1968	U
L 13	Town of Brandon	1963	1,283	12	472	283	1964	G	554	1964	U

WATER RESOURCES OF MISSISSIPPI

Table	Table 16.—Records of selected wells in Area V.—(Continued)	d well	ls in A	rea V.–	-(Conti	nued)					
Vicit Na.	 Ovner	Ycan Dilled	Derjah (fr.)	Casing Diameter (in.)	I lev. of land surface datum (ft.)	Van Van Above (- or below fand wrface (fr.)	Water Level Above (.) Above (.) tand tand (f.,) Accountent	Ľ, Š	Yichd Gallans pu Minute	Date	Remarks
				Rankin	Rankin County (continued)	ntinued)					
14	Tom of Florence	1966	5 56	œ	320	133	9961	4	400	1969	U
5 G	A.C.I. Water Association	1969	1,260	8	550	352	6961	4	125	1969	
X 5	lhion Nator Association	1968	1,236	6, 4	001	187	1968	A	150	1968	
				ઝા	Scott County						
13	Locaburg Water Association	1968	£62	10	06E	164	1969	A	210	1969	
F 2	C and C Water Association	1968	1,248	10, 4	416	105	1968	e,			U
L 2	City of Forest, Woll No. 69-1	1969	1,320	16, 8	480	157	1969	£4	820	1970	U
N I	llonostead Nater Association	1967	1,322	10	602	360	1967	4	300	1967	U
				Sin	Simpson County	к					
в 2 .	Harrisville Water Association	1967	316	10	405	120	1961	c.	162	1967	U
C 10	Touchstone Nater Association	1968	424	10	503	236	1968	64	155	1968	U
p 13	Town of D'Lo	1969	256	12	300	61*	1969	£.,	00 [†]	1969	
5 E	Poplar Springs Water District,	1970	487	12	197	213	1970	£4	257	1970	U
J 3	Netl No. 2 Town of Mendenhall	1967	140	10, 6	383	95	1967	e.	342	1967	
K 2	Shith Crossing Nater Association	1968	125	18	• .	5	1968	6 .			U
1. 2	Okatora Nater Association	1967	1,620	10	530	330	1968	e .	300	1968	U
02	Highway 28 Nater Association	1968	661	IJ	552	125	1968	4	225	1968	υ

96

MISSISSIPPI GEOLOGICAL SURVEY

Under the properties of the propertie												
Constr User Diplet Dimension Other cold Diplet Dimension Open Dimension Displet Dimension Displet Dimension Displet Dimension Displet Dimension Displet Dimension Dimension Displet	=		:		Cashing	Llev. of land surface	Via Above (or helow rand			Yield	_	
Rith County Saith County Polivrille Water Association 196 645 5,6 500 239 1966 7 100 1966 Wite Ouk Water Association 1967 800 0,6 7 103 1967 7 199 1967 Other Nassociation 1967 1968 1,400 10,7 230 1967 7 1967 1967 Conter Ridge Water Association 1966 1,40 10,7 230 1969 7 1969 1967 Conter Ridge Water Association 1966 1,21 10,7 230 23 1969 7 1969 1966 Conter Ridge Water District So. 2 1969 1,21 2,7 260 1506 7 1969 1966 Wistersistipul Mateon Company 1966 1,31 1,52 260 1966 7 40 1966 Hill Ible Nater District So. 2 1966 1,53 260 1966 7 40 1966	No.	Ovner	Year Drilled	(11) (11)	Diancter (in.)	datum (fi.)	surface (ft.)	Date of Measurement	Use	Gallons per Minute	Dele	Remarks
Multillo Mater Association 196 64 9, 6 50 23 1366 P 100 1366 Milto Oki Mater Association 1967 800 0, 6 103 1367 P 100 1367 Center Hido Mater Association 1967 1960 1,01 10,8 2 196 167 196 166 Toon of Mace 1960 1961 10,9 222 200 1365 P 100 1365 Toon of Mace 1969 146 10 222 1969 P 250 1969 Toon of Taylorswilla 1969 1,21 2,73 270 22 1969 P 1969 Mississippi Mubon Octpany 1966 1,213 2,73 260 1966 P 1969 Mill Dale Neter Editatrict Mot. 2 1966 1,213 2,73 59 1966 1966 Hill Dale Neter Editatrict Mot. 2 1966 1,213 2,23 59 1966 1966					81	nith County						
Mite 00k ishor Association 1957 801 0, 6 1357 1367 1 1367 1 1367 1367 1367 1367 1367 1367 1367 1367 1367 1367 1367 1367 1367 1367 1366 </td <td>1</td> <td>Polkville Nater Association</td> <td>1966</td> <td>645</td> <td></td> <td>200</td> <td>238</td> <td>1966</td> <td>۵</td> <td>100</td> <td>1966</td> <td>υ</td>	1	Polkville Nater Association	1966	645		200	238	1966	۵	100	1966	υ
Content Ridge (Nater Association 196 1,400 10,8 200 1960 250 1960 Them of Nateo 1965 424 10 292 4 1965 79 1965 Them of Nateo 1965 424 10 292 4 1965 79 1965 Them of Nateo 1965 146 12 270 292 6 1965 1965 The notified Nateon Company 1966 1,241 4 , 241 200 1966 1 45 1966 Massissippid Nucleon Company 1966 1,241 4 , 241 200 1966 1 45 1966 Hill Date Neter Diatr.ice, 20 1966 1,241 4 , 241 200 1966 1 40 1966 Fisher-Futry Nater Dist. No. 2 1966 1,261 1966 7 40 1966 1966 Fisher-Futry Nater Dist. No. 2 1968 10 1966 7 40 1968 1966 <	E 1	White Ouk Water Association	1967	880	8, 6		183	1967	4	150	1967	υ
Town of Nizot 1965 121 120 292 + 1965 P 175 1965 1965 Town of Taylorswilla 1969 146 12 270 22 1969 P 517 1965 Town of Taylorswilla 1969 146 12 270 22 1969 P 517 1960 Mississippi Nuckon Oxpuny 1966 1,213 4, 214 260 150 1966 P 1966 Hill Date wence Diatricts So. 2 1966 1,213 6, 214 100 228 1966 P 100 1966 Fisher-Furry Nator Dist. So. 2 1966 1,213 59 1966 P 100 1966 Fisher-Furry Nator Dist. So. 2 1966 1966 P 1966 P 100 1966 Fisher-Furry Nator Dist. So. 2 1966 1966 P 1966 P 100 1966 City of Kaynenboro 1969 1976 1969 19 19	K L	Center Ridge Water Association	1968	1,400	10, 8		280	1968	4	250	1968	υ
10 195 146 12 270 23 1969 P 517 1969 Curpary 1966 1,213 4, 24 200 120 1966 1 196 Curpary 1966 1,213 4, 24 260 120 1966 1 196 Curpary 1966 1,313 4, 24 260 130 1966 1 1966 Curpary 1966 1966 1 1966 1 1966 1966 1966 Dist. Xo. 2 1966 390 4 155 59 1966 1 1966 Dist. Xo. 2 1966 390 4 155 59 1966 1 1966 Dist. Xo. 2 1966 1966 7 90 1966 1	01	Town of Mize	1965	424	10	292	+	1965	۵.	175	1965	U
Mississippi Indiano Octroario 1366 1,213 4, 25 260 150 1366 1 45 1966 1 1966 1 1966 1 1966 1 1966 1 1966 1 1966 1966 1 1966 1 1966 1 1966 1 1966 1 1966 1 1966 1 1966 1 1966 1 1966 1	2 2	Town of Taylorsville	1969	346	12	270	77	1969	4	517	1969	υ
Mississippl Mukson Carpony 1966 1,213 7,29 200 150 1966 1 45 1966 Hill Dale Neter Diatrict, No. 2 1966 47 10 228 130 1966 P 170 1966 Hill Dale Neter Diatrict, No. 2 1966 7 106 238 130 1 1966 P 170 1966 Fisher-Furry Water Dist, No. 2 1968 390 4 155 59 1968 7 40 1968 City of Naterbore 1968 180 197 200 1968 7 40 1968 City of Naterbore 1958 118 10 1955 20 1959 1 40 1958 Scotch Plynool Co. of Mississippi 1969 128 4 168 30 1969 1 40 1958					No.	arren County						
Hill Dale Nator Diatricet Xo. 2 1966 417 10 228 150 1966 P 170 1966 Fiskor-Ferry Vacor Dist. Xo. 2 1968 390 4 135 59 1968 7 40 1968 Fiskor-Ferry Vacor Dist. Xo. 2 1968 7 1958 7 40 1968 City of Kaynenboro 1588 110 10 1955 20 1959 P 350 1958 City of Kaynenboro 1588 110 10 1955 20 1959 P 350 1958 Scotch Flywood Co. of Mississippi 1959 128 4 168 30 1959 1 40 1969	1	Mississippi Rukson Corpuny	1966	1,243	4, 24	260	150	1966	н	42	1966	υ
Fisher-Ferry Vacor Dist. No. 2 1968 390 4 155 59 1968 7 40 1968 Right of National Dist. No. 2 1968 110 10 195 20 1958 1 City of National Dist. 1959 110 10 195 20 1959 1 40 1968 Scorch Flywood Co. of Missinstiput 1959 122 4 168 30 1959 1 40 1969		Hill Dale Water District No. 2	1966	437	10	228	150	1966	۵.	170	1966	υ
Kayne Country City of Kayneaboro 1958 118 10 135 20 1358 P 350 1358 South Plynool Co. of Nisaissippi 1969 128 4 168 30 1369 I 40 1969	22	Fisher-Ferry Water Dist. No. 2	1968	06C	4	155	59	1968	۴	40	1968	υ
City of Kayneaboro 1958 110 195 20 1958 P 350 1958 Scorth Flywood Co. of Mississippi 1969 128 4 168 30 1969 1 40 1969					81	iyne County						
Scotch Plywood Co. of Mississippi 1969 128 4 168 30 1969 I 40		City of Naynesboro	1958	118	10	195	20	1958	6	350	1958	U
	-	Scotch Plywood Co. of Mississippi		128	47	168	90	1969	н	40	1969	
	* 1 .				•			• • •	•••	1		

WATER RESOURCES OF MISSISSIPPI

•

. .

;.

۰. ••••• the area. Large yielding municipal, industrial and domestic wells are completed in the Miocene aquifers. The Miocene deposits are lenticular in outline near the outcrop areas and in the southern part of Area V.

Generally, the beds dip toward the south and the trend or strike is east and west. Thickness of the aquifers may be up to several hundred feet.

Water levels range from flowing wells along some of the streams to about 350 feet below land surface. Deeper water levels may accur on tops of some of the higher hills. A well (L 2) 1,650 feet deep in Simpson County had a reported water level of 330 feet in 1967. Water levels are from 170 to 200 feet below land surface at Hazlehurst.

CLAIBORNE AQUIFERS

The Kosciusko and Cockfield formations contain important aquifers throughout the northern part of this region. Depth of these aquifers is from near the surface to about 1,500 feet depending on proximity to the outcrop area and elevation. Wells in the Cockfield and Kosciusko aquifers in the eastern part (Jasper and Wayne Counties) average about 150-500 feet deep while at the Municipal Airport in Rankin County a thick Cockfield sand occurs from 450-620 feet and a sand in the Kosciusko occurs from 960-1,150 feet (Well no. K 27, Rankin Co.).

The Cockfield and Kosciusko formation are fairly uniform but the sand thickness may vary. The Cockfield formation is from 530 feet thick in the vicinity of Jackson to about 80 feet thick in the northeastern part of Wayne County. The Kosciusko is from 800 feet thick in northern Hinds County to about 110 feet thick in northeastern Wayne County.

The Cook Mountain formation, which is not an aquifer, separates the Cockfield and Kosciusko formations. The Cockfield and Kosciusko units are composed of similar sediments of sand, clay and varying amounts of lignite. Generally, the shallower Cockfield sand is finer than the deeper Kosciusko but locally, the Cockfield may contain coarse sand.

Fresh-water is present in the Claiborne aquifers to a depth of more than 2,000 feet below sea level in Copiah, Simpson, Lawrence, and Jefferson Davis Counties (fig. 2). The permeability of the aquifers is low in the southern part as indicated by pumping tests and electrical logs of oil tests. A few wells in the Kosciusko aquifer have been found to contain colored water across the southern part. A deep test at Hazlehurst in Copiah County and two supply wells at Okatoma in Simpson County yielded colored water and the permeability was found to be low.

Yields from wells completed in the Claiborne aquifers may be as much at 1,200 gpm, with the average about 500 gpm. Numerous municipal, industrial and domestic water supplies are from the Kosciusko and Cockfield aquifers.

CATAHOULA AQUIFER

The Catahoula aquifer is an important source of water supplies in the southern part of Area V. Numerous municipal, industrial, and domestic wells are completed in the Catahoula aquifer in Claiborne, Jefferson, northern Adams, Copiah, northern Lincoln, southern Rankin, Simpson, northern Lawrence, northern Jefferson Davis, Smith, northern Covington, southeastern Jasper, northern Jones and northern Wayne Counties. Large withdrawals of water are made from this aquifer at Laurel, Collins, Taylorsville, Magee, Mendenhall, Prentiss, Monticello, Brookhaven, Hazlehurst, Natchez, and Port Gibson.

Well depths are from less than 100 feet to about 1,000 feet deep across this area. The average depth of the wells would probably be less than 500 feet. Well yields are less than 100 gpm to more than 1,000 gpm from this aquifer.

The Catahoula sands are typically lenticular and the aquifer thickness varies in a small area. Prediction of aquifer thickness at specific locations is difficult because of thickness changes in short distances. Recently (1970) the City of Laurel has drilled several test wells in a small area at the Airport attempting to locate sufficient sand that would yield 700 gpm. Test drilling is recommended throughout this area and definitely should be undertaken before planning any large water withdrawal in a specific area.

HATTIESBURG AQUIFER

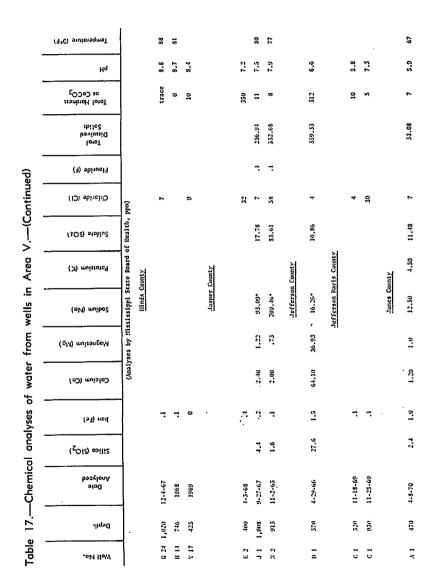
The Hattiesburg deposits are on the surface in the southwestern part of Area V. The unit is a fair aquifer in this area and is used mostly for domestic wells. A few larger wells may be completed in this aquifer in the southern part of the area. The sands are typically lenticular and prediction of sand thickness is difficult at most locations. Separation of the Hattiesburg from the underlying Catahoula is extremely difficult.

Very few records of wells are available to determine the water levels in this area. The water level will probably be similar to the water level in the underlying Catahoula aquifer.

CITRONELLE AQUIFER

The Citronelle formation of Pleistocene age, is an important aquifer in the southern part of the region. The Citronelle is generally composed of sand, gravel, silt and clay. The Citronelle generally is present at high elevations (400-500 ft. in the northern part) and caps the hills or is present near the top of the hills throughout much of the area.

The pumping water level is generally near the base of the Citronelle and the wells are usually screened through this zone or slightly below to allow for drawdown. Large capacity wells should have high specific capacities due to the limited amount of available drawdown of this aquifer at most locations. Municipal, industrial and domestic wells are completed in the Citronelle aquifer in the vicinity of Crystal Springs. Generally, deeper aquifers offer a higher potential for water supply except at a few particular locations where favorable conditions exist for using the Citronelle aquifer.


Water levels in the Citronelle aquifer will be shallow at most locations. The pumping water level is near the base of the unit which is about 100 feet maximum thickness. Water levels in wells completed in the Citronelle are from 24 to 86 feet in the vicinity of Crystal Springs.

QUALITY OF WATER

Generally, most of the aquifers contain water that is good. Usually, the shallow water will have a low pH, be soft to moderately hard, contain low dissolved solids and high carbon dioxide content (Table 17). The deeper aquifers usually contain water that is alkaline (high pH), soft and contains higher dissolved solids.

Color in water is a problem at certain locations in particular aquifers throughout the central part of Area V. Color is thought

	Temperature (0°F)						(250 color)		68									20	
	Hq			6.9	6.3		8.5 (.9.	6.7		7.5	5.3	5.2	5.4	5.5	8.6		7.0	6.7
	Total Hardness as CaCO3			268	ĸ		•0	4	9		150	74	Ņ	σ.	6	traco		21	85
	Totol Dived Solids			313.58	97.05			356.39	425,82			145.63	42.76	27.89	17.56	559.02			
	Flouride (F)						3.2	۶.	s.				ň			82			
	Chlaride (CI)	(ndd		t.	с.		43	48	16		. Ի	19	10	2	4	Ħ		7	6
~	(\$02) station2	(Analyses by Mississippi State Board of Health, ppm)		5.27	7.08				62762			25.51	11.52		4.77	14.48			
Area 1	(X) muissole9	tate Board	ounty	5.50	2.73	County		4.50		County				٥	0	5.0	County		
vells in	(oV) muibo2	sissippi S	Adams County	23.10	8,57	Claiborne County		146.04	161.53*	Copiah County		24.75*	13,84*	6.48	2.90	230.87	Covington County		
from v	(6N) muisenpoM	yses by Hi		35,96	7.14			.49	R.						•49				
f water	(o) muista	(Anal		48.08	17.47			.80	1.20			18,91	2.0	3.61	2.80				
alyses o	(əT) nou			9.0	г.				7		ૡ	trace	.15	.2	i.	0		0	1.5
al and	2111ca (5102)			6.4				4.8	ħ			8.		2.4		4.4			
Table 17.—Chemical analyses of water from wells in Area V.	Analyzed Date			10-15-69	10-13-69		7-9-68	2-9-70	3-20-67		9-2-68	1-17-61	1-9-67	10-4-68	1-13-69	9-14-60		3-13-70	6-21-68
-'11	٩tdəQ			542	267		515	\$05	480		250	108	215	200	300	761		632	410
Table	*°N II#M	1		D 1	G 1		6 d	G 10	N I		18	0.3	J 29	K 12	P 56	R 9		F 2	K S

	(3°C) aiutaiaqmaT								67		·· · ·	
			7.7	6.5	5		8.3	6.1	5.7		00 00 00 I/ N. N. 4, N.	
	Total Hardness as CaCO3		c	trace	trace		t-	4	15		4 5 44 44	
	lotoT Dovicteri toilo2		182.07	136.49	93.19				69,06			
(pai	(E) spinde (E)		۳,	"	4				-		·	
ontinu	Chloride (CI)	(add	u.	e	Ŀ			S	13		15 6 7	• •
0 - 	(tO2) sisting	of Ilealth,	36.05	6.75					4.61		, -	
i Area	()) muissated	ate Borad e County				County			1.50	County		
wells ir	(oN) muibez	(Analyses by Mississippi State Borad of Health, ppm) Lawrence County	-01.07	57.64*	39,97*	Lincoln County			11.11	Madison County		
r from	(ยีพี) เขกเรอบชื่อพู	ses by Mis						8.46	1.22		• • • • <i>4</i>	
of wate	Colcium (Co)	(Anal)					2.31	4.81	4.01		a _n a sala	
alyses c	lion (Fe)		0,2	۰.	۲.		9.	ŗ	.15			
al an	Silice (SiO ₂)		5.6						6.0			
Table 17.—Chemical analyses of water from wells in Area V.—(Continued)	Dote . Daty :		9-30-68	6-18-68	8-3-67		6-20-62	5-22-62	2-24-70		8-5-68 4-21-69 1-20-69 7-29-69	
- 11	Depth		837	864	262		900	443	412		1,228 1,146 700 610	
Tabl€	.oN II9W]	c 1	F 1	11		11	11 1	11 2		8 S S S 8	

ł

	(1°0) envionequel			78				83				80 [.]		67			66	90 color)	68
	.Hq .		7.2	7.0	8.2	8.7	8.5	8. 5		8.5	8.5	7.3		7.5	7.3	6,5	5.5	3.6 (15	5.5
	Total Hardness as CaCO3		216	v	•	n	ŝ	4		traco	ю	38		12 -	01	16	s	0	9
	Total Devices Solids		356,13	210.59				330.54		, 296,58	294.52	185.15		210.40	225.04	145.77	53,02	299,86	15.21
(pai	Flouride (F)							7.						. :				9.	
ontinu	Ci(loride (CI)		7	14	ю	÷	n	40			S	~		23	-	s	11	2	ŝ
2) 	(\$O?) Mailus	f Health)	79.83	20.08				40.66		11.03	17.28	15.33		18,11	52.51	24.29		16.79	
n Area	(X) muissolai	ate Board o county	4.25	1.75					ounty	0	1.25	4.00	County		1.50	4.75	•		
wells ir	(ol/) mibcl	(Analyses by Hississippi State Board of Health) Rankin County	42.25	81.63				131.00*	Scott County	138.70	123.14	55.52	Slepson County	85.06*	85,00	47.70	20.11	116.31*	
from	(BM) ຫນ່ະອາຊຸດM	ses by Hist	11.66				ກຸ	5						1.00	1.00				
if water	Calcium (Ca)	(Analy	67,30	2.40			1.36	1.20			1.2	15,22		3.20	2.40	6.41	2,0		2.40
Ilyses o	(ei) noil		2,00	.75	r.	7	ŗ					1.25		4.	51.	ę		•	
al and	(Sili∞ (SiO ₂)		3.2	4.0				6.4		5.2		4.8				1.4		-12.8	
Table 17.—Chemical analyses of water from wells in Area V.—(Continued)	baiya		5-28-69	4-1-69	12-14-62	10-24-67	42-2-63	10-23-67		11-24-69	1969	7-29-69		6-27-68	11-24-69	3-27-70	1969	5-3-68	1969
ء 17	Depti		382	278	266	198	1,283	955		1,248	1,290	1,322		316	424	487	125	620	661
Table	*on II-W		÷ Y	6.5	52	K 19	T 13	14		4 Z	1 2	N 1		B 2	C 10	9 I	21	1	11 0

•

	(1°C) autoratura (1°C) autoratura			2	80		68			8.2 (700 color)	1:			
	i ta			6.6	55	1.9	8.3	0.1		5.2 (0.7	8.5		7.3
	Total Hardness as CaCO3			\$;	trace	Ś	33	51		1-	13	v		121
	latoT bavlezziQ zbileZ			240.35	375.20		219.58				466.30	608.52		
Ì	(1) obitual (1)	-					1.1					ı.		
	Ciriloride (CI)			15	33	ş	ŝ	rı		202	ŝ	100		٠
	(tOS) sullare	f llcalth)		53,66	\$2.14		ú.58				3.62			12.51
	(X) muissoteA	te Board o	unty						ounty		4.50	5.00	unty	
	(oN) muipos	(Analyses by Mississippi State Board of Health)	Saith County	\$1.18*	-12.74		\$0.97*		Warren County		179.63	215.29	Mayne County	14.95*
	(BW) muisangolA	ics by Miss		3.89			3.55				2.43	r:		6.3
	Calcium (Ca)	(Analys		1.81			4.50				13.62	1.20		31.31
	(si) noi			1.2	i	-	-	'n		0,5	ŝ	÷		
	(² Ois) esilis			4.4	5.2		3.2				÷.:	1.0		
	οτο Βαίς Μιαίγεαί			1-15-68	1-15-65	11-8-68	6-22-66	u-26-by		12-13-66	7-29-69	3-9-70		1959
	ւկվոՕ			645	850	1,400	424	346		1,245	437	390		315
·	.oN (19\V	1		4 I	ΕI	K I	Q 1	t: ≃		IW	K 1	۲۱ هز		K J

1

to be associated with the organic material (lignite, leaves, roots, etc.) deposited in the aquifer material. The Kosciusko and Cockfield aquifers are known to contain colored water of varying degrees in the Jackson area, Bay Springs, Waynesboro and other locations.

Treatment for color removal (coagulation with alum) is expensive and uneconomical for most purposes. Aquifers that contain colored water are not recommended for well development provided shallower aquifers are avai'able for use. Most people prefer clear water for domestic use.

An investigation in 1969 determined that the high chlorides in a city well at Prentiss was caused by industrial pollution from a local plant. The situation is serious at that particular area and should not be allowed to continue.

GROUND WATER

AREA VI

South Mississippi is underlain by several thick aquifer systems and at most locations multiple aquifers are present. The aquifers present in Area VI include the Catahoula, Hattiesburg, Pascagoula, Graham Ferry and Citronelle (fig. 10 and Table 18). Recent publications on the ground water resources in Harrison and Hancock Counties referred to "Miocene aquifers" for the fresh water section in those areas. The Graham Ferry aquifer is recognized in Jackson County and is the principal aquifer for industrial and municipal supplies in the vicinity of Pascagoula.

The aquifers in the coastal counties consist of thick beds of sand or gravel separated by clay layers. The sands are generally lenticular, thereby are not continuous over a large area. Most of these aquifers are capable of supplying large volumes of water to wells in the coastal counties.

The base of fresh water is about 500 feet below sea level across the northeastern part of Area VI in Covington, Jones, Wayne and part of Greene and Perry Counties (fig. 2). The deepest fresh water is present in northwestern Hancock and southwestern Pearl River Counties to a depth of 3,000 feet below sea level. Very few water wells have penetrated the entire freshwater section in the southern half of Area VI (Table 19). A number of shallow piercement-type salt domes are located in

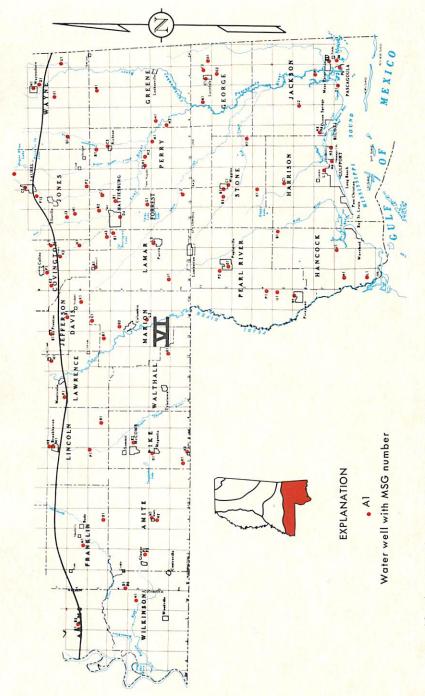


Figure 10.-Location of selected wells in Area VI.

				1			
WATER RESOURCES	Not an important aquifer. A few large wells may be possible along some of the major streams in local areas. Salt water has intruded this aquifer adjacent to the Mississippl Sound.	Some local wells tap this aquifer, but is not used over a very extensive area. Large quantities of water may be available in the southern part where a number of these deposits are developed in a staircase fashion. Salty water is present along the coast in some of these deposits.	Supplies shallow domestic walls throughout most of the area. A few municipal wells are completed in this aquifer. Quality of water is fair. The water usually contains low dissolved solids and has a low pH.	Main source of water supply for municipal and industrial wells in the vicinity of Pascagoula. A number of wells in wastern Jackson and exatern Marrison Counties utilize this aquifer. Quality of water is generally good. Water is slightly alkaline and iron is seldom a problem in the wells at Pascagoula.	An important source of water supply for the municipal, industrial and domestic wells in Hencock, Harrison and Jackson Counties. The Pascagoula, Hartiesburg and the Catahoula are difficult to differentiate in the buburders. Recent publications have placed all of the aquifers into "Miccene aquifers." Quality of water is good from this aquifer. Color is high in a number of wells adjacent to the Missistipi Sound. Hydragen suffide content may be a local problem.	An important source of water supply for the municipal wells at Lucedale. This aquifer has the potential of supplying large volumes of water to wells in Pearl River, Stone and George Counties. Numerous domestic wells top this aquifer in the central part of the area (southem Forrest, Greene, Perry, Pearl River, Stone and George Counties). The quality of water is generally good.	An important source of water in the northern half of the areo. The oquifer supplies numerous municipal, industrial, and domestic water supplies as far south as northern Pearl River, Stone and George Counties. The aquifer is fresh farther south but because of the depth and avail- doility of shallower aquifers is not generally used. The quality of water is generally good.
THICKNESS (feet)	0-80	001-0	0-100	0-200	000 1-0	0-400	500-900
STRATIGRAPHIC UNIT	Alluvium	Terrace Deposits	Citronelle	G raham Ferry	Pascogoula	Hattiesburg	Catahoulo
GROUP							
SERIES	Holocene	augore augor	ale la	Pliocene		Miocene	
SYSTEM		Quaternary			Tertiary		
ERA				piozone	ю		

Table 18.—Stratigraphic column and water resources in Area VI.

Table 19.—Records of selected wells in Area VI.

Well No.: Numbers correspond to those on well-location maps, chemical-analysis tables and pumping test tables.

Majority of wells are rotary drilled.

Vlater Level: 1/1, Measured: R, Reported.

Remarks: C, Chemical Analysis; O, Observation Well; P, Pumping Test.

Ure of Yielli: D, Domerile: I, Industrial: R, Inigalion; N, Nanc: O, Obieveolion: P, Public Supply: S, Stock; T, Terl.

Licvotizm: Ucvotizms determined massly from tapsgraphic maps having contour intervals of 10 or 20 feet.

									ļ		
				Cating	Elev. of land surface	<u>Wal</u> Above (i) or below land	Waler Level e (!) bw		Yield		
No.	Owner	Yeor Drilled	(I) (I)	Diometer (in.)	datum (f1.)	surface (fr.)	Date of Measurement	Use	Gallons per Minute	Dote	Remarks
				Į	Anite County						
F 1	Georgia Pacific	1967	100	:	420	147	1967		609	1967	
	Town of Gloster, Well No. 3	1961	348	21	420	158	1968	4	835	1968	U
1 x	Leon Kirkland	1968	117	÷	415	105	1968	•	**	1968	
2 X 2	Town of Liberty, Well No. 2	1954	620	10	300	166	1955	4	300	1955	U
				Covin	Covington County	শ					
К 3	Town of Seminary	1967	861	80	285	55	1961	۰.	101	1961	ų
1 1	Sanford Community Mater System	1966	\$02	9	205	:	1966	۵.	ш	1966	u
				For	Forrest County						
Υ3	Jetco, Well No. 3	1968	750	9	254	96	1968	-	150	1968	υ
- 1 23	liastabuchie hater Association	1968	718	**	240	50	1968	-	200	1968	U
5	Burrontown Utilities Association	1967	006	8	295	124	1967	۵.	150	1967	U
7 T	Merchants Corpany, Nell No. 2	1968	662	10	152	50	1968	•	450	196\$	
Γ 3	Sunrise Utilities Association	1965	854	60	265	130	1968	د	200	1963	U
19	McLaurin Kater Association	1967	630	ę	3.50	011	1967	۵.	110	1967	U
 	0.S. Forest Service, Ash Sursery	0261	071	3	275	170	1970	Ħ	ก	1970	

MISSISSIPPI GEOLOGICAL SURVEY

.

		5				:		ò			
1.				Casing	Elev. of !and surface	War Above (i or below land	5~		Yield		
Viell Na.	Owner	Yeor Drilled	Depth (f1.)	Diameter (in.)	dalum (fr.)	surface (ft.)	Date of Measurement	Use	Gallons per Minute	Date	Remarks
				E	Franklin County	ង					
	Town of Meadville	1968	244	18	359	155	1969	4	300	1969	
10	Sixtown Nater Association	1961	250	80	115	142	1967	a.,	100	1961	U
				3	<u>George County</u>	ы					
8 1	Bexley Water Association	1966	609	50	185	90	1967	۵	300	1967	υ
5	City of Lucedale	1959	1,008	10	221	011	1960	<u>a</u> .	200	1960	U
c 3	Multi Mart Water System	1967	986	8, 6	289	190	1967	-	195	1967	U
1	Rocky Greek, Nell No. I	1966	625	50	270	190	1967	•	325	1967	U
c 5	Hulti Mart Water System	1966	660	9	270	061	1966	-	85	1966	
				5	Greene County	ম					
8 1	U. S. Forest Service, Stony Tower	1966	583	N	345	192	1966	•	18	1966	
- 2	Plantation Pipe Line	1969	525	4,2 1/2	142	37	1969	-	15	1969	
N 2	McLain Water Association	1970	176	13	80	•20	1970	د	200	026t	υ
				nch I	Hancock County	54					
1 8	Johnson Shaw	1969	1,766	2	120	7	1969	۵	23	1969	
. 1 1	MASA MIF Test Hole No. 1	1961	109	6, 4	15	6+	1967	۴			
Ę	llancoch County [,] Ai rpo rt	1969	660	8, 6	20	•25	1970	۵.	150	1970	
-	Hancock County Port Authority	1969	2,003	12, 8	15	•	1969	<u>د</u>	1,787	1969	

Table 19.—Records of selected wells in Area VI.—(Continued)

						Vła	Vater Level				
	•				Elev. of land	Above (-		:	•	
No.	Owner	Year Drilled	Deptis (1.)	Casing Diameter (in.)	surface daturi (ft.)	land surface (fi.)	and wiace Lute of (1.) Averweent	Ū,	Gallons per Minute	Date	Remarks
				11ar	ltarrison County	2					
C 1	John C. Alliston, Jr.	1968	678	4, 2	120	34	8951	a	20	1968	
11	National Tank Company, Well No. 1	2961	584	10, 6	50		1961	-	602	1961	
N 4	Keesler Air Force Base, Annex No. 3 1969	1969	870	8, 6	15	61	6961	6	240	1969	
s N	City of Biloxi	079t	846	96	28	99	026t	۵.	805	1970	
				<u>, 1ac</u>	Jackson County	~					
J 2	Leo Byrd	1960	\$46	~	105	53	0961	۵			
s N	E. V. Shove	1967	1,134	6, 4	46	6+	1967	<u>-</u>			
8 Q	Bay Water Works	1967	599	8, 6	39	25	1967	<u>د</u>	250	1961	
01	Bacot Subdivision	1968	772	6, 4	u	18	1968	د	150	896 t	
14	Martins Bluff Water Association	1967	730	9	25	8	1967	د	150	1967	U
9 d	Ingalls Shipbuilding Corporation	1963	788	18	10	55	1968	-	1,200	196B	
2 S	City of Moss Point, Sue Fillen St. Well	1968	802	91	20	18	8961	۵.	203	1968	U
9 Q	City of Pascagoula, Sears Town Well 1969	6961	320	12	15	62	1969	<u>6.</u>	200	1969	U
				뢰	Jefferson Davis County	is County					
F 1	Carson Commity Nater Association 1965	1965	380	83	205	202	1966	۵.	201	1966	U
K 1	Lowland Water Association	6961	450	3	453	192	1969	۵.	150	1969	ŗ

Table 19.—Records of selected wells in Area VI.—(Continued)

110

MISSISSIPPI GEOLOGICAL SURVEY

V1.—(Continued)
Area
<u>.</u>
wells
selected
ę
19.—Records
ole

Table	Table 19.—Records of selected wells in Area VI.—(Continued)	llaw ba	s in A	vrea VI.	-Cor	itinued)					
				Casing	Elev. of Jand turface	<u>Vate</u> Above (+) sr below lend	Vater Level e (+) fow		Yield		
No.	Owner	Yeor Drilled	Deptin (1.)	Diameter (in.)	datum (ft.)	surface (fr.)	Date of Mcasurement	Use	Galfans per Minute	Date	Kemarks
				뤽	lones County						
21.2	City of Laurel	1970	500	18	230	16	1970	<u>-</u>	770	1970	
J 3	South Miss. Electric Power Assoc.	1969	263	30	220	30	1969		1,500	1969	
N 1	Moselle Kater Association	1968	754	8	230	135	1968	-	150	1968	
~	Cecil Walters	1970	861	4	268	102	1970	-	93	1970	
				믜	Lanar County						
8 1	Town of Sumrall, Well No. 2	1968	358	10	270	99	1968	۵.	250	1968	
E 1	Arnold Line Water Association	1967	310	s	240	16	1967	<u>a</u>	150	1968	U
ľ	Baxterville Kater Association	1967	78\$	8	416	260	1967	~	69	1967	U
L 3	Progress Community Water System	1963	960	80		219	1968	-	200	1968	U
				-i-i	Lincoln County	N					
1	Bogue Chitto Water Association	1965	019	8,6	100	203	1965	۹.	121	1965	U
- N	Ruth Kuter Association	1967	420	*	Ħ	56	1967	-	150	1969	U
					Marion County	৸					
8 1	Goss Water Association	1968	008	3°2	210	20	1968	2	、 571	1968	e
	Bunker Hill Kater Association	1967	240	ş	114	180	1967	۵.	150	1969	U
G 2	Cedar Grove Community	1968	790	9		70	1968	۵	200	1968	U
13	ikub Kater Association	1968	1,000	6, 4	205	1	1968	-	200	1968	U

WATER RESOURCES OF MISSISSIPPI

						07/	Water Level				
					Elev. of lond	Above (1)					
				Casing	surface	lond			Yield		
No.	Owner	'rear Drilled	Deptis (f.,)	(in.)	datum (11.)	surface (fs.)	Dale of Measurement	Use	Gallons per Minute	Date	Remarks
				Pcarl	Pearl River County	117					
F 7	Sunny Oak Mater Association	1968	1,010	6. 4	335	220	1968	۵	150	1968	U
1 9	City of Poplarville, Well No. 4	1969	530	2	162	165	1969	s.,	847	1969	U
:	Fearl River Central Water Assoc., McKeil Well	1967	860	°S	248	132	1968	4	051	1968	U
-	Pearl River Central Mater Assoc., Carriere Mell	1967	660	10	184	78	1961	4	250	1967	U
×	City of Picayune	1965	1,218	И	60	ş	3961	5			U
				21	Perry County						
8 1	Good Nope Water Association	1968	520	4	267			÷			
C 3	City of Richton, Nell No. 4	1968	660	10	160	7	1968	£.	457	8961	U
	Town of New Augusta	1968	060'1	8	190	3	1968	<u>د</u>	200	8961	U
:=	Nississippi Ilighvay Departnent, Rest Aroa	1968	810	4,2	125	•14	1968	۵	8	1968	U
ľx	Town of Beaumont	1964	666	10, 6	3 2	55.	596t	4	120	5961	U
				-,	Pike County						
E 2	Friendship Mater Association	1961	294	10	425	170	1967	•	217	1969	U
19	North Street Mater Association	1968	260	8	400	165	8961	۵.	100	1968	U
К 1	E. E. Alford and Son	6961	347	8	308	22	1969	R	500	1969	
к.	Town of Osyka	0251	240	3, 6	264	38	1970	۴.	250	0261	

Table 19.—Records of selected wells in Area VI.—(Continued)

.

112

MISSISSIPPI GEOLOGICAL SURVEY

VI.—(Continued)
Area
⊒.
wells
selected
ę.
19Records
Table

					Elev. of Lend	Above F	Vater Level Above (*) er tolone				
V:ell No.	Owner	Year Drilled	Depth (fr.)	Cosing Diometer (in.)	surface catum (ft.)	land surface (fi.)	and urface Dute of (1.) Akcourtement	Use	Yield Gallous per Minute	Date	Remarks
				5	Stone County						
81	City of higgins	1966	050	ä	280	158	996t	۴.,	60 2	1966	U
5	New Lion Kuter Association	1968	1 24	8, G	223	165	1968	<u>.</u>	130	1968	
5	Internutional Paper Company	1969	066	12, 8	2.15	137	1970	-	715	1969	
1 11	University of Mississippi	6961	379	6, 4	165 -	140	6961	IR	002	1969	
К 1	McHenry Utility Association	1961	897	8, 6	230	172	1961	£.	200	1967	υ
				(FA)	Walthall County	ᅿ					
61	Nexter Kater Association	1968	419	01	1:6°	10S	1963	۵.	011	1968	U
				14a	hayne County						
1 0	U. S. Forest Service, Kausau Fire Tower	1965	630	-7	162	96	5961	<u>a</u>	ĸ	1965	
s 1	Clara Kuter System	994il	212	Ŧ	302	HI	1966	<u>م</u> .	60	1966	U
1 1	Rucatumna Nuter Association	1965	670	63	152	8+	1965	c.	20	1965	U
					Wilkinson County	at k					
1 a	Town of Crosby, Nell No. 2	1968	828	10	165	64	1968	۵	350	1968	U
	Town of Croshy, Nell No. 1	1968	202	10	175	11	1968	-	350	1963	
: ::	Buffalo River Nater Association	1970	UST-	83	240	155	0251	e.	150	1970	IJ

WATER RESOURCES OF MISSISSIPPI

Area VI and to the north in Area V. The base of fresh water is shallow over some of the domes. Therefore caution should be exercised in drilling deep water wells on these structures. Deep aquifers are present in Harrison and Hancock Counties which have the ability of supplying large volumes of fresh water to properly constructed wells. A test well 2,460 feet deep (USGS) located in Gulfport's industrial park had a water level of about 100 feet above land surface.

CATAHOULA AQUIFER

Most of the water supplies in the northern part of Area VI are from the Catahoula aquifer. The wells are generally shallow (100 to 1,000 feet deep) and yield large volumes of water. The aquifer consists of beds of sand or gravel separated by clay layers. The sand and gravel beds thicken toward the Gulf and are several hundred feet thick in south Mississippi.

Numerous municipal, industrial, and domestic water supplies are completed in the Catahoula aquifer across this area. The aquifer is used as far south as northern Pearl River, Stone and George Counties. The use of this aquifer has been limited south of the above mentioned area because of the availability of shallower aquifers. Wells yielding up to 2,000 gpm are possible from this aquifer at some locations such as Carson in Jefferson Davis County and Wiggins in Stone County. The sands are generally lenticular in the northern part of Area VI. Test drilling is recommended for most locations because of the lenticular deposits.

Large volumes of water are pumped from the Catahoula aquifer at Hattiesburg, Richton, Purvis, and McComb. A large number of wells for rural water systems and domestic supplies utilize this aquifer in the northern part of Area VI.

Water levels are above the land surface along some of the streams. Flowing wells are primarily located in the Bogue Chitto, Okatoma Creek, Pearl River, Pascagoula River, Chickasawhay River, and some of the smaller creeks across the area. Some of the deeper water levels reported are from 250 to 380 feet. A well which is 796 feet deep in the Catahoula aquifer at Baxterville, Lamar County, had a water level of 264 feet in 1964. A well 425 feet deep at Bassfield, Jefferson Davis County, had a water level of 380 feet in 1964. Slightly deeper water levels may be ex-

pected on tops of high hills. Water levels are depressed in areas of heavy pumpage in a small area such as the Hattiesburg well field located at the new water plant.

HATTIESBURG AQUIFER

The Hattiesburg aquifer is not as widely used as the Catahoula aquifer. The Hattiesburg aquifer has the potential of supplying large wells in the central and southern part of Area VI. A number of shallow domestic and small municipal wells utilize this aquifer in southern Lamar, southern Forrest, Perry and Greene Counties. The municipal wells at Lucedale and two community supply wells north of Lucedale are completed in the Hattiesburg aquifer at a depth of about 1,000 feet. Most of the ground-water development from this aquifer is in Pearl River, Stone and George Counties and slightly north of these counties. The extreme depth is the limiting factor south of these counties. The aquifer is presently being used for ground-water supplies in Wilkinson, Amite, Pike, Walthall, and Marion Counties, which are along the Louisiana boundary.

Separating the Hattiesburg from the underlying Catahoula or the overlying Pascagoula is extremely difficult in the subsurface in Area VI. One solution to this problem is to refer to these units as "Miocene aquifers" and not designate particular aquifers.

Water levels will be similar to those in the Catahoula aquifer. The higher water levels will be located along the streams. A well 1,008 feet deep for the Town of Lucedale had a water level of 100 feet in 1960.

PASCAGOULA AQUIFER

The Pascagoula aquifer is an important source of water supply in the three coastal counties, Hancock, Harrison, and Jackson. Numerous municipal, industrial and domestic wells utilize this aquifer in these counties. Most of the municipalities along the coast have wells completed in this aquifer. Yields from this aquifer are as much as 3,000 gpm at the NASA Test Site. The aquifer consists of thick sands and gravels at a number of locations along the coast. Multiple aquifers or zones of sands are present at most locations.

Water levels are generally above or near the land surface except in areas of concentrated withdrawals. A number of the

MISSISSIPPI GEOLOGICAL SURVEY

116

municipal wells have stopped flowing because of the heavy pumpage in a small area. Most of the ground-water development is parallel to the coast across the three counties.

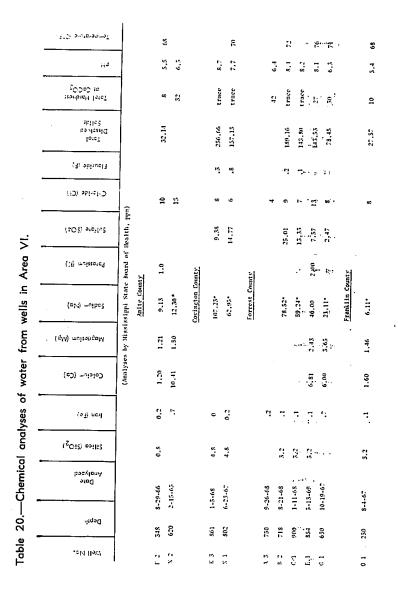
Some of the water from the Pascagoula aquifer is slightly colored to highly colored in the coastal area. Hydrogen sulfide odor is associated with the water from the deep Pascagoula aquifer at some locations.

CITRONELLE AQUIFER

15

The Citronelle deposits generally cover the surface of south Mississippi, particularly in the southern part of Area VI. The Citronelle is present at elevations of 300-400 feet in the northern part of Area VI and the thickness varies from 80 to 100 feet unless the unit is missing due to erosion. The Citronelle underlies the terrace deposits along the Coast and is about 100 feet thick at Bayou Casotte in Jackson County. The deposit may be thinner at other locations on the coast.

The Citronelle is generally composed of coarse sand, silt, gravel and bright colored clays, which are typically near the contact with the underlying Miocene deposits. The slope of the Citronelle deposits is generally toward the south at 6 to 25 feet per mile.


A large number of domestic wells and a few municipal wells are completed in the Citronelle aquifer in Area VI. This aquifer has the potential of furnishing large volumes of water at some locations.

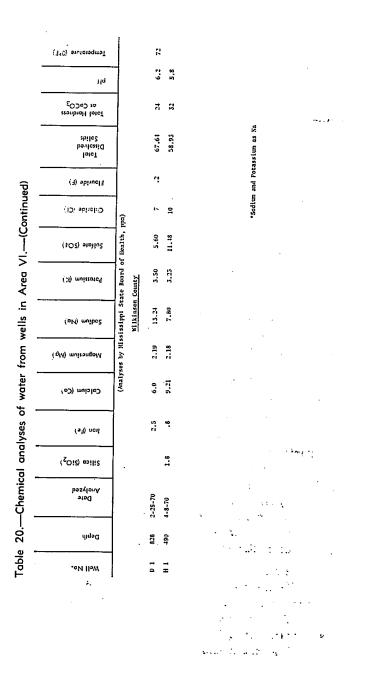
QUALITY OF WATER

Water from the Citronelle, Miocene and Pliocene aquifers is generally good for most purposes.

The quality of the water from the Citronelle aquifer is a low pH, soft to moderately hard, and the mineral content is low (Table 20). Water from the shallow Miocene aquifers is acidic to alkaline, soft, and contains low to moderate (below 250 ppm) total mineral content. Colored water may be a problem in some of the deeper aquifers particularly along the coast.

Iron is a problem at several localities and in various aquifers in Area VI. Excessive iron concentration is a problem in water from wells particularly in the southwestern part of Area VI.

	Temperature (O°F)			22	78	7.3 (II ₂ S odor)	7		8.6 (H ₂ S odor)		8.8 (lì ₂ S odor)	(50 color)	8.1 (I] ² odor)		65	
-	Hq			8.7	1.1	7.3	ъ.8 В		8.6		8.8	(50	8.1		5.2	5.4
-	Tolol Hardness as CaCO3			11	· trace	n	8		•		80	trace	18		ŝ	ŝ
-	fotoT bavlozziQ zbile2			222.88	147.71	106.93	118.87						613.80		17.73	†1 "6
(pa	(T) obivelT			0.1									9			
ontinu	Chloride (CI)	â		58	15	1	v		19		140	225	117		Ś	4
	(FOS) atollos	Health, pi			3.55	10.04	3.95						1.81			
Area V	(2) muizzolai	(Analyses by Mississippi State Board of Mealth, ppu)	ounty			1.25		ounty		County			2.50	vis County		
vells in	(oh) muibos	issippi Sta	George County	10.10*	55.23*	42.02	47.53	Greene County		Jackson County			208.78	Jefforson Davis County	4.04	
from v	(BM) muisangoM	cs by Miss		4.13			76.						2.45	11	49	. 12
water	Calcium (Ca)	(Analys		2.00		1.20	1.60						3,21		1.20	. 2.00
lyses of	(ai) noil			0.1	ŗ	1.1	i.		٥		ę		• •		ų	¦` ⊓
al ana	(_S Oič) milic			4.0	11.6	3.2							3.2		2.8	1
Table 20.—Chemical analyses of water from wells in Area VI.—(Continued)	Date			8-8-67	9-8-66	2-27-69	9-7-67		3-30-70		11-10-67	87-11-0	12-30-69		7-76-67	5-28-69
20.—	Depils			609			625		176			R 1	320		012	120 1
Table	.oN IIaw]		, 8			ú 1		2 N				2 C			1 I X


;

	(7°C) Temperature	1				75			20											
														26		26		92	1	
	Hq			ľ		6.3		ļ	5.6		2.7	5.7	7.8	7.9		7.5	6.2	2.8	8.4	8.8
	Total Hardness as CaCO3]		. 17	; •	4		1	: 3		14	~~~~	18			77	18	0	¢	0
	lotoT baylesziQ sbijo2				15.96	60.94		89.49			19,151			151.01		155.63		176,35	211.86	187.94
(pər	(F) sbînoff]			1.0						ę					ų		ų	4	
ontinu	Chloride (CI)	e l		Ţ	. J	4		5	90		9	4	м	ġ		83	ŝ	7	2	u
VI.–(C	Sulfare (5O4)	(Analyses by Mississippl State Board of Hoalth, ppm)				6.58		19,09			6.42			12.18		10.21		9.54	88.88	11.32
Area	(X) muissotal	ate Board o	ounty			2.70	ounty			ounty	2,50			1.75	County					
wells in	(oV) muibol	sissippl St	Lanar County		4.36	37.75	Lincoln County	30,17*		Marion County	41.00			60.80	Pearl River County	59.77*		73.98*	83.31*	78.59*
from	(6M) muitengoM	ses by Miss						1.21			1.46					1.22				
of water	Caleium (Ca)	(Analy			1.20	1.60		2.40			5,21					2,80				
alyses ((ei) noi			0.2	ų	2.5		ŗ.	ų		ň	'n	ç	ņ		4.	۰.	•	4.	o
al an	(² Ois) milis.				2.0			4.			5.2			2.4		1.6		1.2		1.8
Table 20.—Chemical analyses of water from wells in Area VI.—(Continued)	Date DasylenA			1-18-68	9-17-68	11-20-68		10-6-65	4-27-67		1-14-69	6-23-67	2-28-68	5-6-70		5-20-68	s-21-69	5-20-68	5-20-68	4-8-70
le 20.–	Depth			810	788	960		640	420		800	540 6		1,000 5		1,010 5	530 S	860 5	690 5	1,218 4
Tabl	•on 110M			E 1	11	L 3		1 d	R 1	· .	8 1	۲,	G 2	L 3		F 2	61	2	1 1	K 1.

.

.

	1													lor)					
	Temperature (0°F)				23		2			23				8.2 (li ₂ S odor)				68	2
-	Hq	•		6.7	8.4	7.9	7.8			7.0	7.5		8.2	8		5.7		6.5	8.7
-	Total Hordiness as CoCO3			61	trace	\$	8			trace	v		4	trace		*		53	trace
	tatoT by:rlazzi zbilaz				56.144		685,11 .			129.75	123,36			320.11		24.04			540.03
رو	(f) shinoff				4					г.	۲.			'n			i.		1.2
ontinue	Chiaride (CI)	(cul		6	137	010.1	362			60	2		~	=		н. Н		1	40
Ŭ.	(tOS) sulface (SOt)	lealth, I					34.13			11.48	10.70			24,36					
Area V	(X) muissota9	te Board of	nty		c	I			unty	1.75		unty			County	0	ounty.		
ells in .	(aN) muibo2	(Analyses by Mississippi State Board of Nealth, Pp2)	Perry County		176.50		249.59*		Pike County	59.50	41.92*	Stone County		129.69*	Walthall County	8.23	Wayne County		230.53*
from v	(BY) muissagali	es by Miss					5.34				2.								
water	Calcium (Ca) 	(Analys					10.21				1.20					1.60			•.
yses of	(53) non 			U	: .		1 9	:			ŀ		Γ.	ŗ		r.		6	. .
al anal	\$!!!تھ (SiO ₂)].								2.2				10.4					
Table 20.—Chemical analyses of water from wells in Area VI.—(Continued)	Dote besylonA				20-6-1	5-13-69	5-6-70 1065	6067		2-5-69	4-4-68		3-25-66	1-30-68		69-92-6		11-5-68	9-20-66
20	Depti	-		1	990	1,090	810	500		594	760		950	597		61F		5	029
Table	.cN IIsW	ł			n 0	1		1 12		5	; I 9		-	к 1 К		1 9			1 5 1 5

SURFACE WATER

INTRODUCTION

A tremendous volume of surface water is available for use in Mississippi. Surface water is an important natural resource and care should be taken in future utilization, development, and conservation. Adequate knowledge and information concerning the quantity, quality and availability of surface water will be helpful in determining the most beneficial and desired use of this resource. Surface and ground water are interrelated and a knowledge of both furthers a basic understanding of either. Surface water recharges the aquifers through permeable sand and gravel deposits in the stream bottoms. Streamflow at low stages or base flow is mostly attributed to ground-water discharge into the streams.

An adequate source of available surface and/or ground water is often a basic requirement for the selection of sites for industrial plants, commercial fish-ponds, farms and other economic development. Industry is well aware of this requirement and expects to be assured of large amounts of available water in selecting a particular site. Paper mills, generating plants and chemical plants need large volumes of water. One generating plant may use up to 300 mgd (million gallons per day) or more of water and a paper mill may require 50 mgd. Primarily, the largest use of water for these plants is for cooling purposes and quality restrictions are fairly low for this use (saline water is used if available).

The average annual precipitation ranges from 50 inches in the northwest to 65 inches in the southeast (fig. 1). Late summer and early autumn are usually the driest seasons, and winter and early spring the wettest. The distribution of streamflow during the year is related to the rainfall pattern. The highest demand for water usually occurs when the streams are at their lowest flow. Storage facilities should be considered on most of the smaller streams that are considered for a water source.

The northeastern part of Mississippi is drained by streams of the Tennessee River system. The major streams in the northern part include the Tennessee River, Hatchie River, Tuscumbia River, Yellow Creek, and Bear Creek. The western part of the State drains into the Mississippi River primarily by way of the Yazoo, Big Black and Homochitto Rivers. The central and south-

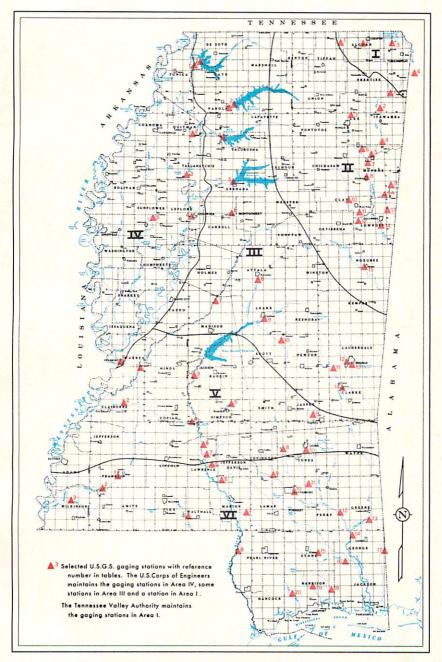


Figure 11.—Location of major streams, selected U.S.G.S. gaging stations, and major surface-water divisions of the State.

ern parts of Mississippi are drained by the Pearl River and its tributaries. The eastern part is drained by the Tombigbee River and tributaries in the north and the Pascagoula River and tributaries in the south. The major streams with their names are illustrated by Figure 11.

Numerous small to medium lakes are located on various small streams throughout the State. Five large flood-control reservoirs are presently in operation within the State with four of these located in the hills above the Delta and one north of Meridian on Okatibbee Creek. The Ross Barnett Reservoir is located on the Pearl River north of Jackson and is for recreational use and water supply rather than for flood protection.

Reservoir name	Storage capacity in acres	Potential storage capacity in acre-feet
Grenada	64,000	1,337,400
Sardis	59,000	1,569,900
Arkabutla	34,000	525,300
Enid	28,000	660,000
Ross Barnett	31,000	305,000
Okatibbee	8,800	124,000

Surface waters are not generally used as a source of water supply in the State but are used extensively for waste dilution and disposal, cooling water for industry, and minor irrigation supply. Two cities, Jackson and Columbus, obtain their water supply from surface water (Pearl River and Luxapallila Creek respectively). Meridian's principal source of water supply is from surface water but the city has two wells to augment the surface water source.

Streamflow is a variable condition and depends on several controlling factors which include climate, geology, topography and runoff. Differences in streamflow exist from basin to basin, within basins and in reaches of individual streams. Similarities exist between streams but no two are identical. Stream-gaging recorders, high water marks and measurements provide records of the history of the streams according to streamflow which includes floods and low flows. The U. S. Geological Survey, Water Resources Division, maintains a network of basic data collecting sites on the streams in the State. The Corps of Engineers has a stream gaging network established primarily in the Delta and in the northeastern part of the State. Predictions of future streamfolw are based on past records and probability of occurrence. Detailed streamflow information is available from the U. S. Geological Survey or Corps of Engineers (in certain areas) on gaging-stations across the State.

The State is divided into 5 regions for this report beginning in the northeastern part with Area I (fig. 11). A brief discussion of the availability, occurrence and quality of water of the major streams is included for each area. Tables are included for each area with a summary of stream-gaging data, available data on lowest mean discharge for 7 consecutive days, and chemical analyses. The summary of stream-gaging data includes drainage area, records available, average discharge, minimum daily discharge, and maximum discharge. Information on lowest mean discharge is included because the minimum flow of streams at any site is the best indication of the amount of water available without storage. Chemical quality information is given and (if available) includes analyses of water at high and low flow. Quality information is often of more concern than quantity in determining the effective utility or value of a water source.

SURFACE WATER

AREA I

Area I, northeast Mississippi, is in the drainage system of the Tennessee River (fig. 11). Most of the streams are small and the drainage is generally toward the north. The principal streams in this region include the Hatchie River (western Alcorn County), Tuscumbia River (central Alcorn County), Seven Mile Creek (eastern Alcorn County), Yellow Creek (western Tishomingo County) and Indian Creek (eastern Tishomingo County). Several small streams drain the eastern part of Tishomingo County and the largest of these is Bear Creek. Table 21 is a summary of the streamflow information available on the streams. Pickwick Lake, on the Tennessee River, is the northeast boundary between Mississippi and Tennessee.

Hatchie River and Tuscumbia River have been canalized and deepened to facilitate drainage in the region. Valuable agricultural land along these streams is protected from flooding to a

		រចពិត ជាខេត (• ហៅ•)	sbi oʻtdol		Averag	e discharge in	Average discharge in cubic feet per second (cfs)	(9		•
Ref. No.	Stream and Location	in a)	Reco Reco	Average Discharg Years (c	Average Discharge :ars (cfs)	Minimum Daily Discharge (cfs) D	num scharge Date	Maximum Discharge (cfs)	Date	Remarks
1	Natchie River at Walnut (Hwy. 72 crossing)	274 18)	1947-61	15	418					Goging station maintained by U. S. Carpa of Engineers, Memphis, Tennesse, Infor- mation fram U. S. Geological Survey.
6	Tuscumbla River vest 277 of Corinth(Hwy, 72 crossing)	277 (Snisi	1950-61	12	432					Geging station maintained by U. S. Corps of Engineers, Memphits, Tennessee, Infor- mation from U. S. Geological Survey-
ε,	Yellow Crcek at Doskie	143	1937-54	16	208	80	July 9, 1948	19,000	Feb. 13, 1948	Goging station maintained by Tennessee Vallay Authority. Information from TVA stream goging publication.
す	Bcar Creek at Bishop, Ala. (across the line from Hississippi)	667	1926-28 1929-32 1933-68	38	38 1,066	E. 6	Sept. 15-17, 1954	37,000	Mar. 22 , 1955	
				Kat	Records or Resour-	from U. S. Ge es Data for N	Records from U. S. Geological Survey. Mater Resources Data for Mississippi, 1962-63.			

Table 21.—Summary of data from selected stream-gaging stations in Area I.

WATER RESOURCES OF MISSISSIPPI

..

. .

certain degree by the canalization of the streams. Flooding is a hazard on most of the streams and flooding records should be checked before building structures near the streams.

The mouth of Yellow Creek is located in Pickwick Lake and the discharge of the lower reach of the stream is controlled by the stage of the lake. Yellow Creek is part of the proposed Tennessee-Tombigbee Waterway. The Mississippi legislature recently appropriated funds for the establishment of a port at the mouth of Yellow Creek on the Tennessee River. A number of recreational facilities are located on Pickwick Lake in Mississippi.

Low flows are common on most of the streams during dry periods. Table 22 includes data on the lowest mean discharge for 7 consecutive days (1960) on Tuscumbia River and Yellow Creek. Storage facilities would have to be provided for a dependable surface-water supply on these streams. A number of the smaller streams have very little flow or zero flow during the dry autumn and late summer. Table 21 may be used to compare the daily minimum discharge of the streams. These figures indicate that storage facilities would have to be provided on any of the streams to furnish an adequate supply of water. Most reservoirs are designed for multi-purpose use which includes water supply and recreation.

QUALITY OF WATER

The quality of surface water is generally good in Area I. Most of the water is low in mineralization and the water is soft. Some of the water during low flows may contain high iron concentration. The water is slightly acidic to neutral and the water is not colored. Turbidity and suspended sediments in the water will be high during storm runoff periods. Table 23 is a compilation of chemical analyses of surface water in the area. An analysis is included for comparison of both high and low flows.

Individual water samples at various discharge rates should be analyzed for specific industrial processes. Most industrial water needs vary in the specific water quality requirements. Surface water will probably not be used as a source of public supplies in this area as adequate ground water supplies are available.

<u></u>
Arec
<u>2</u> .
stations
ream-gaging
đ
e days at sti
consecutive
7 7
discharge fo i I.
mean of the sea of the
-Lowest me tions in
22.HL
e le
Tab

.

÷

Ref. No.	Stream and Location	·Period of Record (years)	Cubic feel per second	Millions of Gollons per day	Year
6	Tuscumbia River near Corinth	8	2,1	1.35	1954
n	Yellow Greek at Doskie	20	10	6,43	1941, 1943, 1954
		NISCELLA	MISCELLANEOUS STATIONS		
	Chambers Creek at Kendrick.	16		•06	676I

.

From a report by Robinson and Shelton, Mississiph Board of Water Cornissioners Builtetin 6n-1

.

Records, from U. S. Geological Survey, Mater Resources Data for Filssissippi, 1962-68

	Color		30		8	35 15	25
	મન્		6.8	•	6"9	6.6 6	6.9
، C) مەردە	standares attraces (micro-anim)	•	46		175	55	30.35
5	stoncchoonel						••
Hordness	Caleium, Kiagnesium		14		39	12 20	11
Dissolved Solids	Residue on eveporetion at 180°C		160		2"981	39	18
<u></u>	Vilinate (NO3)		.0		63	0.5	2.5
	(F) ebituel					<u>116</u> 0.1	0.1
	Chloride (Cl)	cr Lab.)		면하.) (Jaber		<u>urnsví</u> 2.2 2.0	2.2
	(LO2) stailu2	Hatchite River at Walnuc Analysis by Miss, Air and Water Pollution Control Commission Lab.)	14.65	<u>Tuscumbia River West of Corinth</u> (Analysis by Miss, Air and Mater Pollution Control Commission Lab.)	7.24	<u>Yellow Creek Drainage Canal near Burnsville</u> 3.9 2.6 2.0 2.3 25 3.8 2.2 0.1 3.0 1.2 2.0 1.1 16 3.6 2.0 .0	<u>tpley</u> 0.0 .8
(^C (DDH) etencitailă	at Ma Alr al Commis		Atr at Commis		25 25 16	ear R 16 14
	(%) muissale¶	River Miss. Dutrol	3.75 0.75	<u>Ver V</u> Miss. ntrol	2.51	nage (2.3 1.1	<u>1.0</u> 1.0 0.6
	(oN) muibes	Hatchic River at Walnut ysis by Miss. Air and W ution Control Commissio	3.75	bia Ri sis by cion Co	30.25 2.51	2.0 2.0	<u>Hatchic River near Ripley</u> 1.2 1.0 16 0.0 1.1 0.6 14 .8
	(Gyr) wrisaubory	Analy Follut	•	<u>Tuscur</u> (Analy: Pollut		2.6 1.2	1.8 1.0
	Calcium (Ca)	•		-		<u>xell</u> (3.9	
	(ə4) ucıl	•				00°	0.21
	(² cič) noilič					9.3	6.4 1.8
	Temperature (°F)	•	62		2		•
	ຄ _{ອຍແທ} ່າວເ ¹ ປ (ເຄວ)			•		1.13 3.74	9.41 10.8
			69		69	1959 1960	1959 1960
	Date of Collection		9-25-69		9-25-69	Nov. 3, 1959 Мау 30, 1960	Nov. 3, 1 May 30, 1
	Reference No.		ч		~	54	4 X 9

Table 23.—Chemical analyses of water from streams in Area I.

(Analytical results in parts per million, except as indicated)

(Analyses by U. S. Geological Survey)

SURFACE WATER

AREA II

Most of northeast Mississippi, Area II, is drained by the Tombigbee River system (fig. 11). Part of the northern and western area is drained by the tributary system of the Mississippi River.

Large quantities of water are available from the major streams, particularly the Tombigbee River. Most large industries in the area are located adjacent to an available surface water source. Surface water is used for waste dilution, cooling water, and process water by most industries. Irrigation systems use surface water but there are only a small number of these systems in the area. Only one municipality, Columbus, uses surface water as a source of municipal supply in Area II. The City of Columbus pumps about 3.2 to 3.8 mgd (million gallons per day) from Luxapallila Creek. Treatment of surface water for municipal use is expensive and requires skilled personnel to operate the treatment plant.

The Tombigbee River is the largest stream with a drainage area of 5,600 square miles at the Mississippi-Alabama line. The Tombigbee River is formed by the confluence of the East and West forks of the Tombigbee near Amory. The average flow at Columbus, for 53 years, (1899-1912, 1928-1968) is 6,183 cfs (cubic feet per second) (drainage area of 4,490 square miles). The maximum discharge recorded at the Columbus gage was 148,000 cfs on January 7, 1949 and the minimum discharge was 138 cfs on September 30, 1954. (Table 24). The median flow for the Tombigbee River increases from 630 mgd at Amory to about 1,700 mgd at the Mississippi-Alabama line.

The tributaries of the Tombigbee River vary in shape, size, and amount of discharge. The principal creeks are Mackeys, Bull Mountain, Oldtown, James, Chuquatonchee, Tippah, and Luxapallila Creeks. The main rivers include the Buttahatchee and Noxubee Rivers. Discharge during periods of low flow on the tributaries is important for the supply of water without storage facilities. Most low flow data is presently based on mean flows for various periods, 7, 15, 30, 60, 120 and 183 days. The 7 day period is shown on Table 25. This procedure excludes the point minimum discharge which may occur during a period of a few hours or Table 24.—Summary of data from selected stream-gaging stations in Area II.

	Remarks								
		Mar. 21, 1955	Mar. 22, 1955	Mar. 21, 1955	Mar. 22, 1955	Feb. 15, 1948	Mar. 22, 1955	Mar. 22, 1955	July 9, 1967
		21,	22,	21,	22,	5	2	22	· 6 /
	ă	Mar.	Mar.	Mar.	Mar.	Feb.	Mar.	Mar.	, Iul
	Maximum Discharge (cfs)	16,300	82,200	23,000	40,000	52,800	151,000	126,000	4,430
Average discharge in cubic feet per second (cfs)	nge Date	(Since 1944) Sept. 3,4,5, 1954	Aug. 31 to Sept. 2, 1943	Several times	Aug. 28 to Sept. 3, 1943	Sept. 15, 1954	Sept. 14, 15, 1942	Sept. 20, 1954	Several times
e dischange in cubi	Minimum Daily Discharge (cfs) D	8.2 (Sep	12 8	0	19	29	8.0	45	0
Averag	ac (tj)	101	893	175	529	1,973	896	2,935	
	Average Discharge Years (cfs	31	40	20	28	15	29	31	
ida) le Idale	cos9 Avai	1937-68	1928-68	1943-46 1951-68	1940-68	1944-54 1963-68	1939-68	1937-68	1963-68
موره مروم ۱۰ س۱۰)		66	605	112	335	1,194	617	1,941	28.9
	Streem and Location	Mackeys Creek near Dennis	Tombigbee River near Fulton	Oldtown Creek at Tupelo	Bull Mountain Creek near Smithville	Tombigbee River at Bigbee	West Fork Tombigbee River near Nettleton	Tombigbee River near Amory	James Creek at. Aberdøen
	Ref. No.	1.	2.	з.	4.	°.	6 .	7.	8.

MISSISSIPPI GEOLOGICAL SURVEY

~
(Continued
Ë
in Area
2.
stations
stream-gaging st
f data from selected
from
data
ę
24.—Summary
Table 2

	Remarks								
	e Dote	Dec. 20, 1967	Mar. 29, 1951	Mar. 29, 1951	Dec. 18, 1967	Feb. 23, 1961	Jan. 7, 1949	March 30, 1951	Records from U. S. Geological Survey. Mater Resources Data for Mississippi, 1962-68.
-	Maximum Discharge (cfs)	36,300	45,800	75,200	13,200	14,200	148,000	52,000	ecords from U. ater Resources 962-68.
Average discharge in cubic feet per second (cfs)	Minimum Daily Discharge Is) Date	Aug. 3, 1966	Several times	Several times	Aug. 26, 1943	Aug. 14, 1954	Sept. 20, 1954	Aug. 25, 26, 1943	X M L
e discharge	Daily (cfs)	148	•	•	o	23	138	22	
Averag	Avenage Discharge rars (cfs)		751	1,229	123	469	6,183	923	
	Aver Disc Years		25	31	ŝ	23	53	34	
nds I obje	Reca	1966-68	1943-68	1928-30 1939-68	1942-44 1952-57 1959-60	1943-47 1949-68	1899-1912 1928-68	1928-32 1938-68	
noge area 1. mi.)	Drai (#	787 -	514	928	98.2	309	4,490	812	
	Streem and Location	Buttahatchee River near Aberdeen	Chuquatonchee Creek near West Point	Tíbbee Crcek near Tíbbee	Catalpa Creek at Mayhew	Luxapallíla Crcek at Steens	Tombigbee River at Columbus	Noxubee River at Macon	
	Ref. No.	9.	10.	n.	12.	13.	14	15	

WATER RESOURCES OF MISSISSIPPI

during some type of regulation. Table 25 indicates the lowest mean discharge for 7-day periods at selected gaging stations located in Area II.

Streamflow during low stages consists mainly of ground water discharged into the streams. The bottom of a stream is sometimes connected with a highly permeable aquifer and the aquifer or aquifers provide most of the base-flow of streams. The reverse of this is true and at times the streams help in the recharge of the aquifer or aquifers. Most of the low flow of the tributaries in northern Mississippi is derived from those that drain the eastern side of the basin (Table 25). Several of the tributaries draining the western side experience periods of no flow. The explanation of this difference in low flows in the east and west side of the Tombigbee basin is attributed to geologic control. Generally, the Cretaceous beds that outcrop on the western side of the basin are impervious chalk and clays (Demopolis chalk, Ripley clay, Porters Creek clay). These impervious deposits have little storage capacity which results in high flood flows and little runoff during dry weather periods.

Some of the streams in the region have high maximum discharges and high average discharges. Table 24 is included so that several streams may be compared at average, minimum and maximum flows. An industry may judge whether to consider a stream without storage if their maximum draft is lower than the low flow.

Flooding is a serious problem on most of the streams. Extensive flooding has occurred in 1892, 1948, 1949, 1951 and 1955 on the Tombigbee River. Recent publicity (1969) of this problem has resulted in plans being formulated to protect the low lying areas of Columbus with a levee. The danger of flooding at specific locations in or near the flood-plain should be carefully considered. The frequency and height of floods at proposed locations should be considered from past records of floods in the region.

A few small lakes and reservoirs are available for recreational use in the area. Numerous farm ponds are present and afford private fishing.

Surface water use will probably continue to grow as the industrial growth increases in the region. The Tombigbee River

i	1			-											sioa/		•••		alton, scioners,
	Yeer	1954	1943	Several	1943	1942	1943	Many	1954	1954		1943	1943	1954	Most years	. 1943	1943	Many	obinson and Shu I Water Commi
ing sta-	f Gallans day	 				_		_					_	_					From a report by Robinson and Shelton, Missisalppi Boord of Water Commissioners, Bulletin 60–1.
stream-go	Miltions of Gallons per day	. 5.68	9.62	U	12.27	1.03	32.95	·	16.34	. 91,02	IIONS	6.46	10.40	3.30	0	41.34	54.91	•	•••
ive days at	Cubic feet per second	8.8	14.9	0	19.0	1.6	51.0	ъ	25.3	171	MISCELLANEOUS STATIONS	10.0	16.1	5.1	0	64.0	85.0		
ge for 7 consecu	Period of Record (years)		32	=	21	21	52	. 25	i.	45	W	۶.	•	17		32		2 2 2	
Table 25.—Lowest mean discharge for 7 consecutive days at stream-gaging sta- tions in Area II.	Stream and Location	Mackeys Creek, Dennis	Eqst Fork, Tombigbee River , Fulton	Oldtown Creek, Tupelo	Bull Mauniain Creek, Smithville	West Fork, Tombighee River, Nettleton	Tambigbee River, Amory	Tibbee Creek, Tibbee	Luxapaliilia Creek, Sieens	Tanibigbée River, Columbus	•	East Fark, Tombighce River, Marietta	East Fark, Tombigbee River, Beans Ferry	Bull Mountain Creck, Tremant	Euclautabba Creek, Saltīllo	Tombigbee River, Aberdeen	Buttaharchee River, Caledonia	Chaskaloncheè Creek, Viest Point	
Table	Ref.	· -	2.	3.	4	9	r,	÷	13.	ž				•	.*				
														•		·	•	•	• •
•	• ••				• •										•		•	er i r	

set for a second

133

•

is the largest source of surface water in this region and industrial development will probably be in this general area.

QUALITY OF WATER

The quality of surface water is generally good in northeast Mississippi. Generally, the water is low in total dissolved solids, low in iron content, and slightly low pH (acidic) to basic water type. The water in some of the tributaries draining the outcrop area of the chalk is hard. Table 26 is included to illustrate the particular type of water at a particular stage and flow on selected streams. The dissolved solids content of the water is higher during periods of low flow and the suspended material increases during high discharge periods. Turbidity also increases during storm runoff as more suspended material is carried by the water. Treatment of surface water has to be flexible and adjust to the variation of quality of the water at different stages or flows of the streams.

SURFACE WATER

AREA III

North central and central Mississippi, Area III, is drained by streams of the Yazoo, Big Black, Pearl and Pascagoula River systems. The northern part is drained by tributaries of the Yazoo River, the Big Black and Pearl Rivers drain the central part of the area and the eastern part is drained by tributaries of the Pascagoula River.

Most of the streams are small in size and only the Big Black and Pearl Rivers are fairly large near the southern boundary of Area III. Four of the tributary streams of the Yazoo River have flood-control structures for the Mississippi Delta constructed in Area III. A flood-control structure was recently (1969) completed on Okatibbee Creek north of Meridian.

Data from selected stream-gaging stations on streams within the region are included in Table 27. Information on stream size, drainage area, minimum discharge and years of record may be helpful to a potential user.

A large demand for surface-water would require constructing storage facilities on most of the smaller streams. The Pearl River, near the Leake-Madison County line, the Big Black, near

	,	f									
	Color		40 25		22		10		2001		28
	Hq	1	6.5 6.5		6.8 6.1		7.0		6.8 8 8 8 8 8 8		6.7 6.6
	opriotochico pilioge (D'12 to serim-eraim)		37 29		79 46		284		276 163 306		105
	aioncaioancN		c o		90		22		20 20 20		~~
	Calcium, Tage Calcium, Calcium		81		31		125		109 75 131		9 7
	Residue on 00 100 100 100 100 100 100 100 100 100		24		302		. 162	:	167 116 175		60 60
	Vitrate (VO3)		0.6		00		٥		1.9 2.0 0.1		0.3
•	(7) spinueli		0.1	5	°:0		1.0	티	<i>.</i>		0.0
~	Chloride (Cl)		2.0	East Fork Tomblybee River near Fulion	3.5	ci	6,8	West Fork Tombighee River near Nettleton	13 14.7	21	6.1 3.1
vdicated	Sulfate (504)	nnis	1.4 2.0	or no	7.2	<u>Oldtown Creek at Tupelo</u>	28	near 1	14 113 · 118 ·	Tombigbee River near Amory	4.4 10
opt es la urvey)	Bicarbonate (HCO ₃)	KOL D	14	ce R1	31	ck at	126	lver	116 82 135	er ned	40 40
n, eve gied S	(X) muissote9	Creek 1	1.0	ab i rb	1.3	n Cre	3.0	ghee 1	3.93	e Rive	1.3
er nilli 5. Gesk	(aN) mulbes	Mickeys Creek near Damis	1.2 1.1	ork To	2.3	Oldton	4.8	Tomb {	7.6 6.0	ab í gbe	4.6
in ports r isy U.	(Civ) muisançois	2.1	0.9	East	8.9		1.9	at Fork	2.1.2	붜	1.8 0.6
(Analytical results in parts per million, except or indicated) (Analytes by U. S. Geological Surrey)	Coleium (Co)		2.2		11 5.0		47	Hei	41 28 49		13
Analytica ((si) noit		0.30		.04		0.02		02 0.02		0.00
	(çci2) sollic		7.0		1.9		7.5		22 20 8 4		5.3
	Temperature (°E) ·										
	Cise:arge ^a . Cise:		29 35		663 99		Ħ		22 1,190 429		268 5,000
	Date of Collection		Nav. 3, 1959 Nay 30, 1960		Mar. 3, 1959 Sept. 12, 1962		Dec. 6, 1967		Sept. 4, 1962 Dec. 13, 1963 Dec. 5, 1967	- - 	Sept. 18, 1963 Jan. 29, 1964
	Reference No.				20		3			د	5 7

Table 26.—Chemical analyses of water from streams in Area II.

.

Dale of Collection	Discharge ^a (cis)	lemperature (°F)	(Zoit) Silica (Sio ₂)	(iou (Fe)	(o)) muisib	(GM) muisangolA	(eV) mulbes	(3) muissated	Bicarbonate (HCO ₃)	Sulfate (SO4)	Chloride (CI)	(1) sbirucli	(60V) startiN	Residue on Solid Residue on Solid Residu	Caleium, Magnesium Singerian	2/0//02/02/02/02/02/02/02/02/02/02/02/02	Specific conductonce (micro-mhos at 23°C) Hq	Color .
Feb. 26, 1964 Apríl 30, 1964			9.1 5.8	.03	Butto 1.9 1.4	ahntel .1 .1	<u>Buttabutchie River newr Kolola Springs</u> .9 .1 1.2 .5 4 1.8 1.2 .4 .1 1.8 1.4 4 3.6 1.3	ver nei .5 1.4	nr Xol 4	<u>ela Sp</u> 1.8 3.6	rtnss 1.2 1.3	4.0	61.0	81 18	t- n	84	22 5.9 18 5.9	22
Nov. 4, 1959 Xay 31, 1960	1.95 1.19		3.58	28	• 97	11.5 0	<u>Catalpa Creek at Navhev</u> 3 23 5.5 300 35 2 24 4.2 266 25	Creek 5.5 4.2	at Na 300 266	<u>35</u> 35 25	18 16	<i></i>	9.6	335 304	254	80	540 7.8 479 8.0	80
July 8, 1960 Apríl 30, 1964	76 3,000		4.9 6.5	- 20	1.9	9.0	Luxapaliila Creek at Steens .6 1.4 .7 9 1.2 0 .7 .4 5 1.2	1a Cre .7 .4	6 5 5	Steens 1.2 1.2	1.12	44	4	18 15	~ 9	00	26 6.4 22 5.8	4 8 80

					2				
		ids Ioble		Average	: dîschange	Average discharge in cubic feet per second (cfs)			
Ref. No. Streem and Location	iter (10	Reco Avai	Average Discharge Years (cfs)	ge arge (cís)	M Daily (cfs)	Minimum Daily Discharge Is) Date	Maximum Discharge (cfs)	Dete	Remorks
YAZOO RIVER BASIN									
l, Coldwater River at Arkabutla Dam	1,000	1937-68	99	1,269	0	Many times up to 1958	30,200	Jan. 22, 1938	Regulated since 1942
 Tailahatchie River near Sardis 	1,680	1928-42	14	2 ,093	16	Sept. 19, 1942	65,300	Jan. 15, 1932	Regulated since Sept. 1939
 Tellahatchie River at Sardis Dam 	1,545	1940-68	28	2,176	•	Many times	5,780	June 24, 1946	Regulated
A Vocana Binar at	260	1078_68 AN 817 A	70	613	c	Manu Pines	16 100	36 300 Each 1/ 10/8 Baconlated	Pace latad

Table 27.—Summary of data from selected stream-gaging stations in Area III.

			u,•l 960 u			Average	s discharge in	Average discharge in cubic feet per second (cls)			
7-9			nion Det)	eco Avai	Average	ge	Minimum	Minimum	Maximum	E	
No.	. Streem and Location				Years	(cfs)	(cfs)	Date	(cfs)	Date	Kenorks
2	YAZOO RIVER BASIN										
-	l, Coldwater River at Arkabutla Dam		1,000	1937-68	30	1,269	0	Many times up to 1958	30,200	Jan. 22, 1938	8 Regulated since 1942
7.	 Tailahatchie River near Sardis 		1,680	1928-42	14	2,093	16	Sept. 19, 1942	65,300	Jan. 15, 1932	? Regulated si Sept. 1939
з.	. Tellahatchie River at Sardis Dam		1,545	1940-68	28	2,176	0	Many times	5,780	June 24, 1946	Regulated
4.	. Yocona River at Enid Dam		560	1928-68	40	812	0	Many times	36,300	Feb. 14, 1948	8 Regulated
°.	5. Yalobusha River at Grenada Dam		1,320	1953-68	15	1,703	•	Many times	4,850	Jan. 3, 1958	Regulated
é.	6. Thompson Creek at McCarley	• • •	14.4	1956-64	~	19	1.0	Oct. 1, 1956	2,810	July 16, 1963	_
2	BIG BLACK RIVER BASIN	 .,									
7.	7. Big Black River at Fickens	•	1,460	1936-68	32	1,785	27	Aug. 31, Sept.1, 1943	67,67	Mar. 28, 1951	_

		Remarks				Creek has been canalized			Flow regulated 1969		
		rum rige Date		Mar. 29, 1951	Mar. 19, 1964	Jan. 7, 1950		Feb. 22, 1961	Feb. 22, 1961	April 6, 1964	Feb. 23, 1961
H		Maximum Discharge (cfs)		19,300	18,200	34,600		30,800	27,000	062,9	61,700
tions in Arec	Average discharge in cubic leet per second (cfs)	ge Date		Aug. 20-24, 1943	Oct. 30, 1963	Oct. 2, 1954		Sept. 28-30, 1954	Sept. 11-13, 1952	Oct. 4, 1954 At times during July, Aug., Sept., 1957	Sept. 25-30, 1954 Oct. 22,25, 1963
aging sta	scharge in cubic	Minimum Daily Discharge (cfs) D			31 0ct				.48 Sep 195		O C C D
stream-g	Average di	.3		383 2.3	1,310 3	468 2.4		449 1.6	287 .4	56.2 .20	1,137 18
ected		Average Discharg Years (c		8	9	8		30	30	18	90
from seld	رمه امهاد	eco Reco		1938-68	1962-68	1938-68		1938-68	1938-68	1950-68	1938-68
f data	1096 סופט 1. mi.)	iimQ x)		314	1,347	411		368	239	51.9	616
Table 27.—Summary of data from selected stream-gaging stations in Area III. (Continued)	·	Stream and Location	PEARL RIVER BASIN	Yockanookany River near Kosciusko	Pearl River near Carthage	Tuscolameta Creek at Walnut Grove	PASCAGOULA RIVER BASIN	 Chunky River near Chunky 	Okatibbee Creek near Meridian	Sowashee Creek at Meridian	14. Chickasawhay River at Enterprise
Tabl		Ref. No.	PEAR	ຮ້		10.	PASC		12.	13.	14.

Records from U. S. Geological Survey, Mater Resources Data for Wississippi, 1962-68.

.

Pickens, and the Chickasawhay River at Enterprise could maintain a fair-sized water supply (11 to 20 mgd) during most of the year. The majority of the smaller streams either have a minimum flow of zero or near zero during the dry periods of summer and fall. Available information on minimum flows at stream-gaging stations is included in Table 28.

fany times 954,195 Year Several 1943 1954 1954 1943 1954 942 1939 1954 1946 1954 1943 1956 1943 931 943 954 1941 545 1954 942 Table 28.—Lowest mean discharge for 7 consecutive days at stream-gaging sta-Mississippi Board of Water Commissioners, Bulletin 60-1 . From a report by Robinson and Shelton, Willions of gallons per day 1.15 .19 8. 4.05 1.5 2.1 11.7 2.6 9.3 20.3 2.4 3.9 3.7 1.2 20.8 25.6 1.5 5.89 8 3.94 0.7 • 0 Cubic Feet Per second 31.6 18.1 3.2 5.7 1.9 2.4 3.3 1.8 3.8 5.1 32.4 1.1 39.7 2.3 6.3 0 24.6 -5 0 99 MISCELLANEOUS STATIONS ı i ::•<u>;</u>• 11 Period of record wiam. years) 2 30 30 2 ទ 3 61 20 20 10 H e E 24 8 19 12.12 6 fockanookany River near Kosciusko fuscolameta Creek at Walnut Grove Pigeon Roost Creek near Lewisburg Chickasawhay River at Enterprise Yalobusha River at Calhoum City **Okatibbee Creek near Meridian** tions in Area III. Lobutcha Creek near Carthage **Big Black River at Pickens** sowashee Creek at Meridian Cane Creek near New Albany Tallahatchic River at Etta Yalobusha River at Grenada Stream and location Long Creek near Courtland Yocona River near Oxford. ocona River at Enid Dam Chunky River near Chunky Clear Creek near Oxford Pearl River at Edinburg Skuna River at Bruce Noxubee River, Brooksville Cane Creek, New Albany Noxubee River, Macon Tallahatchie River, Etta Ref. ŝ. 4 Υ. * <u>.</u> Ξ ដ ц. 14. 18.5

Large amounts of surface water are available during maximum flow of the streams in Area III. Maximum flow, in the past, has ranged from 2,810 cfs (1963) on Thompson Creek at McCarley to 65,300 cfs (1932) on the Tallahatchie River near Sardis.

MISSISSIPPI GEOLOGICAL SURVEY

All of these streams are subject to flooding. Flooding may occur rapidly because of the relative short drainage area and the steep gradient of the streams. Flood-control structures have been constructed on the main streams entering the Delta from the hills. Four reservoirs; Arkabutla on Coldwater River. Sardis on Tallahatchie River, Enid on Yocona River, and Grenada on Yalobusha River regulate water that would otherwise flood over the rich agricultural land of the Delta. The regulation of the flows has generally served to maintain higher discharges in the streams during summer and fall months when low flows normally occur and irrigation demand is high in the Delta. All of the reservoirs are designed for multipurpose use and provide recreational areas as well as flood-control. Most of the use for surface water in Area III is for cooling water. irrigation and partially for dilution of wastes near population centers. Some stream pollution may be present in certain reaches of the streams.

QUALITY OF WATER

The quality of surface water is generally good. Analyses of water from selected streams are included in Table 29. The chemical analyses indicate that the water is soft (4-28 ppm) and contains low (36-94 ppm) dissolved solids.

SURFACE WATER

AREA IV

Area IV, northwestern Mississippi, is drained by the Yazoo River system. The principal tributaries of the Yazoo River include the Sunflower River, Bogue Phalia, Quiver River, Tallahatchie River and Coldwater River (fig. 11). The tributaries rise in the hills (Area III) to the east of Area IV and flow down through the Delta region. Discharge of the principal streams is regulated by dams located in Area III. A large number of levees, channel improvements and drainage canals are located in Area IV which aids in the control of excess runoff in the streams during the wet season. Water transportation and commerce is of major importance on the Mississippi River. There is an economic advantage in locating plants close to water transportation and manufacturers are aware of this fact.

The flow of the Mississippi River is large during most of the year. The average discharge for 40 years (1928-68) is 551,-

· · ·	Colot	5 5 5 5 70	5 20 5 20	2007 2000 2000	2 20	2
	micro-micro of 23°C)	2 6.7 9 6.5 0 6.6	4 8 6.4 7 6.8	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	L . 6.2	107 6.0
	Nioncarbonate Specific conductance	1 52 2 69 5 80	1 64 6 78 0 87	3523	12 0	7 16
	Galcium, Calcium, Mognosium	18 24 24	18 24 24	16 16 8	22	28
	Dissidue on Solici Solici netionerori Solici	36 54 48	94 68 59	38 338	54	52
	Nitrate (NO3)	0.6 .4 1.2	0.8 1.9	0.5 1.3 1.2	0.1	1.0
	(F)ouride (F)	5.7 7 7	0.5 • 5	0.0	0.1	0.8
. ?	Chloride (Cl)	04m 3.0 4.2	4 · 5 6 · 0	<u>iusko</u> 3.5 5.2 2.8	4.8	<u>rise</u> 8.6
And when the stream is the stream of the str	Sulfate (SO4)	Sardts Dam 5.0 3 5.3.6 3 7.6 4	<u>Big Black River at Fickens</u> .4 5.1 1.9 20 7.8 .6 5.6 2.7 21 8.2 .0 5.5 1.4 34 4.6	Vockanookany River near Kosciusko Vockanookany River near Kosciusko 0.2 2.4 0.5 5 0.0 3.5 1.7 4.5 0.9 17 4.6 5.2 1.2 3.6 1.2 6 6.8 2.3	<u>Okatibbee Creek near Meridian</u> 2.1 4.0 2.8 27 3.0	Chickasawhay River at Enterprise 2,2 8.5 3.3 26 11 8.6
cept as Survey]	Bicarbanate (HCO3)	555 g	r at P 20 34	er nea 5 17 6	10 I I I I I I I I I I I I I I I I I I I	er at 26
llion, c. ological	(X) muissote9	Tallahatchie River 1.5 2.3 2.0 1.4 2.8 2.2 1.6 3.3 1.8	k Rive 1.9 2.7 1.4	<u>ny Rive</u> 0.5 1.2	reek n 2.8	<u>ay Rív</u> 3,3
is per mi	(aV) muibe2	hatchie 2.3 2.8 3.3	8 Blaci 5.1 5.5 5.5	an <u>ookar</u> 2.4 3.6 3.6	(bbee C	<u>kasawh</u> 8.5
al round around around an vice al results in parts per million, except as (Analyses by U. S. Goolegical Survey)	(6M) muisangoM			••		
cal resul (Analys	Calcium (Ca)	4.6	4.6 6.9 9.9	1.1 3.6 1.3	5.3	7.6
(Analysi	(si) nci	0.22 .10 .22	0.35	0.07	0.24	0.09
2	Silica (Sio2)	2.0 1.6 1.3	7.4 8.6	1.9 6.1 3.9	4.6	11
5	(eF) Temperature	69 2.2 8	45 84 65	71 11		
	Discharge ^d (داء)	2,850 1,960 4,080	3,000 340 179	110 32.8 2,770	12	72
(Analyses by U. S. Goological Survey) (Analyses by U. S. Goological Survey)	Dete of Collection	Oct. 23, 1958 Mar. 10, 1959 Jume 22, 1959	Feb. 13, 1958 June 10, 1958 Oct. 22, 1958	Dec. 9, 1959 May 24, 1960 Feb. 2, 1960	Oct. 25, 1967	Oct. 25, 1967
	Rafarence No.	0 £ 5	1 1 1 1 1 1	م م	12	14 (

• · · · . . . WATER RESOURCES OF MISSISSIPPI

141

100 cfs at Vicksburg with a drainage area of approximately 1,-144,500 square miles (Table 30). The average discharge for the Mississippi River at Memphis for 35 years (1933-68) is 450,700 cfs with a drainage area of approximately 932,800 square miles. These figures indicate the average flow of the river. The increase in flow indicates the amount of water the streams between Memphis and Vicksburg contribute to the flow.

The Yazoo River and its tributaries drain the major portion of Area IV. The average discharge of the Yazoo River at Greenwood (drainage area of 7,450 square miles) is 9,763 cfs for a period of record of 46 years (1907-12, 1927-64). A comparison of the streams drainage area, average flow, minimum and maximum flow may be undertaken by using Table 30. Numerous floods were recorded in Area IV prior to the completion of the flood-control structures on the streams. Presently, floods are not a major threat to this region. Low flows are more or less controlled by the upstream flow-regulating structures. Excess water is usually discharged from the flood-control structures during periods that low flows otherwise would normally occur on the streams. Table 31 is included to indicate the low flows on the Sunflower River and Mississippi River.

A large volume of surface water is used for irrigation throughout the Delta. The small streams dry up during a drought and are not a dependable irrigation source. Most farmers use both wells and streams for irrigation sources provided a fairly large stream is located nearby.

A number of ox-bow lakes are present in this region and afford recreational areas. Numerous private farm ponds are also present.

QUALITY OF WATER

Generally, surface water in Area IV is of fair quality for most users. Table 32 gives information on the chemical quality of the surface water in Area IV. Samples were collected at different rates of flow and will vary according to the amount of discharge at that particular time. Analyses are included on both the high and low rates of flow (if available) for comparison of the chemical quality.

The water is fairly hard (20 to 172 ppm) and the mineralization of the water is higher (40 to 304 ppm) than most surface

		Remarks	Regulated	Actual measured flow of Coldwater River because Tallahatchie is diverted through a floodway.	Partly regulated since 1939.	Tríbutaries regulated.	Upstream "ater used for 1-rigation		cical survey. Mississippi,
		mum arge Date	Jan. 22, 1938	Jan. 30, 1937	April 9, 1933	Jan. 19, 1932	April 28, 1964	Feb. 17, 1937	keords from U. S. Godogical Survey. Mater Resources bata for Mississtipi. 1964-08.
ea IV.	cfs)	Maximum Discharge (cfs)	30,200	32,800	49,200	72,900	11,700	2,080,000	Keo Kati 196
stations in Ar	Average discitange in subic feet per second (cfs)	Minimum y Discharge Date	Nany times	0ct. 27-29, 1942	Oct. 27, 1942	Oct. 20, 1943	Aug. 16, 1954 Aug. 9, 10, 1956	Nov. 1, 1939 2,080,000	
gaging	: discharge i	Minimum Daily Discinarge (cfs) D	0	5	213	536	81	607, 66	
stream-	Average	0 00 ju	1,269	2,557	161,7	9,763	956	40 551,100 99,400	
ted		Avera Disch Years	R	33	30	46	33	40	
rom selec	sbro oldbie	coog iovA	1937-41 1942-68	1935-68	1929-38 1938-68	1907-12 1927-64	1935-68	1928-68	
of data f	r.im.⊧p i.im.⊧p	Droi W	1,000	1,980	5,130	7,450	767	1,144,500	
Table 30.—Summary of data from selected stream-gaging stations in Area IV.		Stream and Location	Coldwater River at Arkabuta Dam	Tallahatchle River near Lambert	Tallahatchie River at Swan Lake	Yazoo River at Greenwood	Sunflower River at Sunflower	Míssíssippi Ríver near Vicksburg	
Table		Fef. No.	-	3.	3.	4.	۶.	ę.	

Stream and Location	Period of Record (years)	Cubic feet per second	Millions of Gollons per day	Year
Sunflower River at Sunflower,	22	83.0	53.6	1956
Mississippi River near Vicksburg,	26	102.4	66.1	1936

WATER RESOURCES OF MISSISSIPPI

From a report by Robinson and Shelton. Mississippi Roard of Kater Commissioners. Bulletin 60-1. Table 32.—Chemical analyses of water from streams in Area IV.

		Color		0 30		ოო		22			30		°°	
	<u> </u>	Hq		6.6		7.1		7.5			5.7		1.7	•
	Q.C) auce	Specific conducts (micro-minus at 2		60 72		167 310		483 396			199		156 265	
		Noncarbonate		00		00		40 40			m		••	
	Handness	Colcium, Alagnesium		23 23		74 134		172 160			8		56 97	ьс. 1
	Dissolved Solids	Residue on eveporation of 180°C		40 52		122 183		304 242			136		91 174	Records from U. S. Geological Survey. Mater Resources Data for Mississipt. 1962-68.
		Nitrale (NO3)		6°0		2.8 .4		3.6			0.7		1.2	cologi for M
		(T) obitual		.		ů4		n 4			0.2		4.4	U. S. G es Data
		Chloride (CI)		3.2	•.•	3.5	21	13		ി	8.0		8.5 19	i fron lesourc 8,
dicated)		Sulfate (SO4)	wood	6.8 3.0	flower	9.4 7.4	<u>'Icksh</u>	67 47	SES	Idsv11	ព	poor	8.2 8.8	Records Nater Re 1962-68,
spt as in urvey)	(^E C	Bicarbonate (NCC	Green	30	at Sur	90 176	ncar V	154 146	ANALY	ar Doc	94	t Red	70 728	
n, exce gical 5		(X) muizzates	er at	3.2 1.7	lver	5.0	liver	2.7	NEOUS	or ro	9.1	lver a	2.1	
s. Geala		(aV) muibe2	Yazoo River at Greenwood	3.6	Sunflower River at Sunflower	5.8 10	Mississippi River near Vicksburg	32	MISCELLANEOUS ANALYSES	Quiver River near Doddaville	6.8	Yazoo River at Redwood	8.0 19	
(Andytical results in parts per million, except as indicated) (Andytes by U. S. Geological Survey)		(Gyy) wnisousoyy	, and a second s	2.6	Sunf	3.3 10	Missis	14	M	Jup	7.9	~1	5.0	
at results (Analyses		Calcium (Ca)		3.6 7.1		24 37		49 43			19		14 271	•
Analytic		(sī) neil		0.0		00.02		.0 1			8		88	
-		21j1ca (2102)		5.8		1.3		8.3 5.9			6,0		4.2	
		(°F) (°F)		46		54		76					•	
-	:	Dîşçixirge ^a (cîs)		18,200 8,110		1,020 185		684,000 311,000			22			
. :		:		1960 1962		1959		1951 1961			1959		1961 1961	•
		Date of Collection		Feb. 3, 1960 Sept. 26, 1962		Mar. 10, 1959 Sept. 26, 1962		6 June 16, 1951 Oct. 18, 1961			Nov. 20, 1959		Oct. 19, 1961 Nov. 1, 1961	•
		selerence No.	1	4 4		5 N N			÷		24		04	
	1		L											

MISSISSIPPI GEOLOGICAL SURVEY

water. Turbidity and sediment load is often a problem on the major streams. Some of the streams contain "muddy" or turbid water most of the time.

Insecticides and related poisons used for agricultural purposes have increased in use during the past few years in Area IV. The surface water, including streams and lakes, has become polluted to varying degrees by the build up of these poisons. The aerial application and widespread use of the poisons has intensified this problem in the region.

Some of the streams in the region may contain industrial and/or organic pollution. Effluent from numerous sewage-disposal ponds plus some untreated sewage drains into some of the streams in the vicinity of Yazoo City, Greenwood, Greenville, and Vicksburg.

SURFACE WATER

AREA V

An abundance of available surface water is present in Area V (fig. 11). Numerous streams and rivers drain the region with the largest being the Mississippi River. Other river drainage systems in the region include the Big Black River, Pearl River, and the Pascagoula River. The eastern part of the region is the general headwaters for the Pascagoula River system. Numerous tributaries of the major streams form an intricate drainage system throughout the area.

Several large lakes or reservoirs and many small lakes are present in Area V. The Ross Barnett Reservoir on the Pearl River north of Jackson is the largest lake in the area. The other lakes in the region include Copiah Lake in Copiah County, Roosevelt Lake in Scott County, Lake Mary Crawford in Lawrence County, and Lake Bogue Homa in Jones County.

The greatest amount of available surface water is located in the largest rivers. The flow of the Mississippi River averages more than 550,000 cfs (40 years record at Vicksburg) and the flow is higher at Natchez. The average flow of the Big Black River at Bovina is 3,315 cfs (32 years of record). The Pearl River at Jackson has an average flow of 3,745 cfs (51 years of record) and the average flow increases to 6,014 cfs (30 years of record) at Monticello. The Leaf River at Collins has an average flow of 1,010 cfs (30 years of record). Information at gaging stations on drainage area, years of records, average discharge, minimum and maximum discharges of streams in Area V is tabulated in Table 33.

		Remarks			nual maximum	Flow regulated to a degree by Ross Barnett Reservoir since Sept. 27, 1961	*annual maximum							ological Survey. for Mississippi
			Date	Dec. 20;1961	Oct. 5, 1964 *annual maximum	Mar. 31, 1902 Fl. der Rec	Oct. 4, 1964 *a	Jan. 7, 1950	April 27, 1966	Dec. 25, 1961	Feb. 23, 1961	Feb. 16, 1966	April 7, 1964	Records from 0. 8, Geological Survey. Later Resources bata for Mississiphi. 1964-68.
sa V.		Maximum Discharge	. (cfs)	63,500	31,300	85,000	22,000	24,800	6,380	63,500	48,500	2 ,0 00	21,100	
tations in Are	Average discharge in cubic feet per second (cfs)	m Jaige	Date	Oct. 2, 1954	Oct. 13,14,1963	Sept. 18, 1963	Sept. 29,30,1968 22,000	Sept. 1, 1954	Oct. 8-15,24,1967 Aug. 12-15,1967	Ocč. 24, 1963	Aug. 28-30, 1957	Sept. 30, 1968	Nov. 3, 1952 Oct. 21, Nov. 1, 1963	
-gaging s	· discharge in cut	Minimum Daily Discharge	(cfs)	65	23	45	7.8	12	15	269	55	.18	1.8	
stream	Average	age Marge	(cais (cfs)	3,315	712	3,745		541		6,014	1,010		321	
cted		Average Discharg	Ycais	32	٢	51		40		30	30		30	
rom sele	رطع اطعاد	coail iovA		1936-68	1959-61* 1961-68	1901-13 1928-68	1948-65* 1965-68	1928-68	1965-68	1938-68	1938-68	1965-68	1938-68	
data f	ا• سا• ، ماد عنوم	ieiO 22)		2,810	653	3,100	48.6	429	154	5,040	752	30.7	233	
Table 33.—Summary of data from selected stream-gaging stations in Area V.			Stream and Location	Big Black River near Bovina	Bayou Pierre near Willows	Pearl Ríver at Jackson	Coplah Creek near Kazlehurst	Strong River at D'Lo	Bahala Creek near Oma	Pearl River near Monticello	Leaf River near Collins	Tallahattah Creek near Waldrup	Tallahala Creek at Laurel	
Table		lef.	°N No	-	2	n	4	ŝ	9	1	20	5	10	

Flooding is possible on all of the streams and tributaries in the region. Consideration of the flood hazard within the flood plains of streams is important in the construction of structures. Levees have been built around Flowood on the eastern side of the Pearl River in recent years to prevent flooding in the particular area. The U. S. Geological Survey publishes annually records of floods on a large number of streams over the State.

Low flows are common on most all of the smaller streams and tributaries in this region. The minimum flow of a stream is of considerable importance to many users and potential users. Minimum low flows are often the conrtolling factor in determining the dependability of the water supply available for industrial or municipal development. Table 34 is included for stream-gaging

Table 34.—Lowest mean discharge for 7 consecutive days at stream-gaging stations In Area V.

Ref. No.	Stream and Location	Period of Record (years)	Cubic feet per second	Millions of Gallons per day	Year
1	Big Black River near Bovina	22	67.1	43	1954
3	Pearl River at Jackson	41	80	51.4	1904,1954
5	Strong River at D'Lo	29	17.4	11.2	1954
7	Pearl River near Monticello	20	298.1	191.6	1956
10	Tallahala Creek at Laurel	20	2.6	1.7	1952

From a report by Robinson and Shelton, Mississippi Board of Mater Commissioners, Bulletin 60-1.

stations on the lowest mean discharge for seven consecutive days. Storage facilities for a dependable water supply would have to be provided on most of the smaller streams in the area.

QUALITY OF WATER

Most surface water in Area V is of good quality for general use. The water contains low dissolved solids and the pH is slightly acidic. Table 35 is a tabulation of chemical analyses on water from selected streams in the area. Two analyses, where available, are listed for comparison at high and low flow of the streams.

Pollution is a problem on certain streams and reaches of streams across the area. Industrial and municipal pollution is a serious problem on the reach of the Pearl River below Jackson.

	Color Color β Color ζωειξιες conductance (ωειξιες conductance β Μ Δημείο (ωειξιες conductance β Μ Γειριών (ωειξιες conductance β Μ Γειριών (ωειξια Γειριών (ωειξια Γειριών (ωα) Γειριών </th <th><u>Bit Black River near Bovina</u> 378 4.6 0.55 8.6 4.9 12 3.6 52 6.8 14 0.1 0.9 88 42 0 144 7.0 5 9,910 1.5 .07 4.4 1.9 5.2 3.9 20 7.6 6.0 .2 .2 41 18 2 67 6.4 5</th> <th>8 9.1 .06 4.2 1.8 7.5 .26 2.6 0.5</th> <th><u>Peart Kiver it. Jackson</u> 5,600 6.7 .33 2.6 .8 3.2 1.4 9 4.0 4.2 .3 .9 30 10 2 43 5.8 30 204 9.4 .10 5.0 1.3 3.4 1.3 21 3.4 4.4 .0 .3 40 18 1 64 6.1 0 <u>Copiah Creek neer Harlehurst</u></th> <th>36. 14 01 4.4 1.0 6.4 1.4 15 6.8 6.9 0 1.7 56 15 3 72 6.0 5 9.1 13 .00 2.3 1.2 10 2.3 26 5.0 8.0 .1 .0 52 11 0 74 5.9 0</th>	<u>Bit Black River near Bovina</u> 378 4.6 0.55 8.6 4.9 12 3.6 52 6.8 14 0.1 0.9 88 42 0 144 7.0 5 9,910 1.5 .07 4.4 1.9 5.2 3.9 20 7.6 6.0 .2 .2 41 18 2 67 6.4 5	8 9.1 .06 4.2 1.8 7.5 .26 2.6 0.5	<u>Peart Kiver it. Jackson</u> 5,600 6.7 .33 2.6 .8 3.2 1.4 9 4.0 4.2 .3 .9 30 10 2 43 5.8 30 204 9.4 .10 5.0 1.3 3.4 1.3 21 3.4 4.4 .0 .3 40 18 1 64 6.1 0 <u>Copiah Creek neer Harlehurst</u>	36. 14 01 4.4 1.0 6.4 1.4 15 6.8 6.9 0 1.7 56 15 3 72 6.0 5 9.1 13 .00 2.3 1.2 10 2.3 26 5.0 8.0 .1 .0 52 11 0 74 5.9 0
Date of Collection Collection Feb. 17, 1958 Feb. 14, 1958 Sept. 4, 1958 Sept. 4, 1958 Sept. 4, 1962 Aug. 30; 1966	 Dischorge ^a	958	11-20, 1961 70 11-20, 1961 9,020		

~ ·

•

control to the second secon second sec

Table 35.—Chemical analyses of water from streams in Area V.—(Continued)

(Analytical results in parts per million, except as indicated)

(Analyzes by U. S. Geological Survey)

	Calar		20		80 5		υ Σ		88					
	Hq		5.9		5.9		5.9 6.1		6.2 6.3					2
4	oprotoubres officedates (Office and officedates)		41 89		42 25		86 59 86		34 42	•	3,000.		380 88	l Survi
é	stanedioareM				0-		50		50					-
15DUDIS44	Calcium, Atognesium		12 18		φœ		16		12					20
	Residue on 1503 Residue on 1503 eventorication at 180℃		35 64		32 16		36		19 26					Records from 11. S. Geological Survey.
	CON startiN		0.4		ćυ		1.0		.5					Records
	(f) shineli		0.1		•				•.∹					-
	Chloride (Cl)		1.7		6.5 2.6	~	5.1 6.5		2.5	빍				
	Sulfare (SO2)	97, G	6.0 4.8	0:::0	°.º	Pearl River near Monticello	7.2 8.2	llins	4.0	Tallahattah Creek near Waldrup		됩		
	(CODH) standtabil	er at	13 21	near	12 6	r Mon	14 29	ar Co	٥ü	k nea		ot Lau		
	3) muissote9	Strong River at D'Lo	2.0 1.8	<u> Bahala Creek near Oza</u>	.9	er nea	1.6 2.4	Leaf River near Collins	8. r.	h Creel		Tallahala Creek ot Laurel		
	Sadiym -Na,	Stro	3.4 8.8	<u>Baha Lo</u>	4.1	rl Riv	3.7	eaf Ri	1.7 2.6	ahatta		Tallaha		
	(CM) mukenzow		0.5		1.1	Pea	1.3	-1	1.0	Tall				
	eD, mutateD		4.0		1.4		4.2		2.7					
	(og) vog		0.03		10.		0. 10 10		00.					
	⁰ 015, 20185		6.3 10		12 4.2		5.6		1.4					
	orutoreal (1)						70 84				66 72		72 49	
	Discharge ^d (efs)	1	3,640 46		17 3,910		22 , 000 390		5,920 114		10 43		30 551	
	Date of Collection		May 20, 1966 Aug. 29, 1966		Nov. 4, 1965 April 26, 1966		May 3, 1966 Sept. 8, 1966		Nar. 16, 1960 June 24, 1960		Oct. 20, 1965 May 23, 1966		Nay 11, 1965 Feb. 26, 1965	
	ich oonorofa.	1	ŝ		G		~		ec .		ъ.		2	

23 Color From a report by Gaydos, Michael K., Mississippi Board of Water Cormissioners, Bulletin 65-1. 6.9 7.4 Hq Specific conductance (D°25 to sorim-croim) 580 82 308 491 28 41 9100cd1000cM ų, Hardness unison 601A 132 196 28 Calcium, eveporation of 160°C Dissolved Solids 30159 389 5 no subites 1.1 üΰ (CON) startiN Table 35.—Chemical analyses of water from streams in Area V.—(Continued) (7) sbinclî -:-: Nņ Chicknsawhay River near Waynesboru 141 **1**4 Chloride (Cl) Mississippi River at Natchez (Analytical tasults in parts per million, except as indicated) 12.4.6 54 54 (FOS) stallus MISCELLANEOUS ANALYSES 53 128 181 (Analyses by U. S. Geological Survey) (COCH) stancdrasia 3.2 3.2 1.6 1.6 (X) muissote9 4.9 78 2.1 7.6 (oN) muibes 51 52 1.⁰ (Gyy) wnisangold 28 4.5 83 Calcium (Ca) 85 88 (ə4) nov 9.1 4.2 (Silica (Siaz) (°F) Temperature (\$j>) Discharge Oct. 21-31,1963 Mar. 17-21,1964 Oct. 5, 1961 Aug. 30, 1962 Date of Collection .cld sansisiai

Tallahala Creek below Laurel is polluted by industrial and some municipal waste. Discharge of oil field waste, mostly saline water, is a pollution problem in some of the streams across the area. The City of Jackson is presently planning the construction of a major sewage treatment plant. The Air and Water Pollution Control Commission is working toward solving the pollution problem at various locations on the streams.

SURFACE WATER

AREA VI

Large quantities of surface water are available in Area VI, south Mississippi. The principal drainage systems in this region are the Mississippi, Pearl, Pascagoula, Wolf and Biloxi Rivers. The Pearl and Pascagoula River systems are the largest rivers in the region discounting the Mississippi River. The Homochitto, Buffalo, Amite and Bogue Chitto Rivers are the major streams which drain southwest Mississippi. The Pearl River and tributaries drain the central part of the State. The Pascagoula River and tributaries, along with the Wolf and Biloxi Rivers drain the southern and eastern part of the State.

Table 36 lists the principal streams in Area VI and summarizes available data from stream-gaging stations. The Pearl River at Bogalusa, Louisiana, drainage area of 6,630 square miles, has an average discharge of 8,693 cfs (1938-68 record). The Pascagoula River at Merrill compares with the Pearl River in size and average discharge. The Pascagoula River at Merrill, drainage area of 6,600 square miles, has an average discharge of 9,349 cfs (1930-68 record). Either of these streams could supply large volumes of water (400 to 500 million gallons per day) at these particular locations.

Numerous smaller streams are present in Area VI and several of these have sustained flows of fair size most of the time. The Homochitto River at Rosetta has an average discharge of 977 cfs (1938-68 record) and a daily minimum discharge of 129 cfs. The Bogue Chitto near Tylertown has an average discharge of 777 cfs and a daily minimum discharge of 175 cfs (1944-68 record). The Tallahala Creek near Runnelstown has an average discharge of 881 cfs and a daily minimum flow of 29 cfs (1939-69 record). The Leaf River near McLain has an average flow of 5,153 cfs and a daily minimum flow of 478 cfs (1939-68

- .

••

.

• 1

MISSISSIPPI GEOLOGICAL SURVEY

٦.

152

۰.

		Remarks			ć	Flow regulated							
		tum rge Date	Feb. 26, 1961	Feb. 28, 1961	Feb. 27, 1961	April 27, 1964	Dec. 12. 1961	June 2, 1959	Sept. 19, 1957	April 27, 1964	March 13, 1947	- 1	
vrea VI.	(efs)	Maximum Discharge (cfs)	128,000	73,600	178,000	3,670	21,500	30,000	17,700	8,420	18,500		Becords from 11 5 611
stations in A	Average discharge in cubic feet per second (cfs)	Minimum 1y Discharge Date	Oct. 22, 1963	Oct. 30, 31, 1963	Nov. 3, 1936	Dec. 7, 1965	Oct. 22, 1963	Sept. 2-4, 1954	Sept. 4, 5, 1954	Oct. 21, 1963	Nov. 1, 1944		
am-gaging	erage discharge in	Minimum Daily Discharge (cfs) D	478	160	696	.5 12	88	37	1.6	1.1	25		
ted stree	Ave	Average Dischange Years (cfs)	29 5,153	30 3,594	38 9,349	11 49.5	10 790	23 930	16 177	16 170	6 481		
trom selec	stric Əldalə		1939-68	1938-68	1930-68	1953-54 1957-68	1958-68	1945-68	1952-68 1	1952-68	1945-47 1964-68	: 	
ot data J)	inageorea (,im ,p	n t)	3,510	2,680	6,600	24.8	915	506	92.4	98.3	253		
lable 30.—Summary of data from selected stream-gaging stations in Area VI. (Continued)		Streem and Location	Leaf River near McLain	Chickasawhay River at 2,680 Leakesville	Pascagoula River at Merrill	Flint Creek near Wiggins	Red Creek at Vestry	Escatawpa River near Wilmer, Ala.	Tuxachanie Creck near Biloxi	Biloxi River at Wortham	Wolf River near Lyman	•	
		Ref. No.	12	5	14	15	16	1	18	61	30		

. -Table 36.—Summary of data from selected . Records from U. S. Geological Survey, Mater Resources Data for Mississippi, 1964-68.

1

WATER RESOURCES OF MISSISSIPPI

record). The Chickasawhay River at Leakesville has an average flow of 3,594 cfs and a minimum flow of 160 cfs (1938-68). The Leaf River at Hattiesburg has an average flow of 2,521 cfs and a daily minimum flow of 318 cfs (1938-68 record).

Other smaller streams drain the region but their flows are relatively small. Storage facilities would have to be provided for a large draft of water to be available. These streams should be considered for water supply as generally the quality of water is superior to some of the larger streams where pollution is a problem. Table 37 includes available information on the lowest mean discharge for 7 consecutive days at stream-gaging stations.

.

able	Table 37.—Lowest mean discharge for 7 consecutive days at stream-goging sta- tions in Area VI.	irge for 7 conse	cutive days at	stream-gaging sta-	
žej.	Stream and Location	Period of Record (years)	Cubic feet per second	Millions of Gallons per day	Year
-	Homochitto River at Eddiceton	20	29.4	18.9	1956
7	Homochitto River at Rosetta	4	230.6	148.3	1956
e	Buffalo River near Woodville	16	18,1	11.6	1956
4	Bouge Chitto near Tylertown	14	185.6	5.911	1952
6	Bowle Creek near Hattlesburg	20	84.1	54.0	1957
10	Leaf River at Hattiesburg	20	354.6	228	1954
н	Tallahala Creek near Runnelstown	19	33.6	21.5	1954
12	Leaf River near McLain	19	540	347	1952
13	Chickasawhay River at Leakesville	20	212.1	136.2	1952
14	Pascagoula River at Merrill	28	4.627	465.2	1936
18	Tuxachanie Creek near Biloxi	Q	1.8	1.1	1954
19	Biloxi River at Wortham	ę	2.2	1.4	1954
20	Wolf River near Lyman	4	42.3	27.2	1947
		t T		From a report by Rohinson and Sheiton, Mississippi Roard of Mater Commissioners, Bulletin 60-1.	n and Shelton, er Comissioners,

Flooding is a potential hazard in the flood plains adjacent to the streams in this region. Most of the streams have unusually wide flood plains that represent ancestral streams which were larger than the present day streams. Notable flooding occurred on the Pascagoula River and tributaries in 1961. Available records of flooding should be checked before building a structure near any of the streams.

QUALITY OF WATER

The chemical quality of surface water is generally good in Area VI. Most of the water contains low dissolved solids. The pH of the water ranges from about 4.5 to nearly 7. Iron concentration is low and well within the maximum limits (.3 ppm) for most uses. Table 38 is a tabulation of selected analyses of surface water in Area VI. Color is high in a number of streams particularly during high flow. Swampy areas are numerous throughout the region. The colored water accumulates in the swamps and drains into the streams during storms and high rainfall.

Pollution is a serious problem on some of the streams. Oil fields are associated with some of the high chlorides and oilwaste pollution at numerous sites in the region. Industrial pollution is apparent on Tallahala Creek south of Laurel to the confluence with the Leaf River near Mahned. Organic pollution resulting from the discharge of untreated sewage is a problem on certain reaches of many streams.

CONCLUSIONS

Ground and surface water will both be important in fulfilling the water supply needs of Mississippi. Generally, surface water will continue to provide the large volumes of industrial water while ground water will be used for municipal, domestic, and small industrial supplies.

n S 33 23 ŝς ន្តខ 22 releO 2.5 0.5 6.6 5.8 6.6 6.4 2.8.5 5.6 114 (Dest to seriore autoroluce 53 នួត 57 108 31 86 specific conductor 102 asouccioners 00 < m 0 m ۶ø ∞ 2 2 17 แกรงแบบงา 28 .moioleD 11 52 80 <u>Ci</u> -1 52 or ogs Ξ. D.081 10. Solids 35 23 98 ន្លួន 214 85 32 ٠į٢ uc appress 14 æ.œ **°** ... 5. S. ŝ ų ų :1: 1:0014 anouita .1 0.0 ---45 Ч°, 21 9.0 (d) spinold •7,J ~ 0.5 9.8 Chloride (CI) Chickasawhay River at Leakesville 5.4 101 4.8 13 101 23 ្នត្ត Bowle Creek near llattlesburg Pascagoula River at Merrill (Analytical retults in parts per million, except as indicated) 2.8 2.8 5.5 3.2 9.0 22 Leaf River at Hattlesburg Table 38.----Chemical analyses of water from streams in Area VI. McLain (+OS) stallus led Creek at Vestry (Amelyses by U. S: Geological Survey) <u>1</u>9 22 583 ₫® 150031) stanediasi8 ក្តខ ~ 0 near 1.7 1.6 .8 51 2.0 1.7 **~** * (24) muissoles Leaf River 52.7.4 3.7 6.1 11 1.8 7.4 (oN) muibez 31 6.0 2.7 4.0 e, e, 27. °. 🖞 (BW) muisaneory . . . : . 1.3 2.4 . 18 6.9 4.3 5.6 3.1 (o) muisto) 88 12 29 89 32 22 (અનુ) પ્લ્ય 5.1 5.1 2.2 . 4 . 5 7.9 (Seit) noilit 8.7 2.8 (et) Leinparature ÷., • 6 Ŷ -78 2,030 1060 (5)) 1,100 297 3-11, 1964 629 14-18, 196516500 470 Discharge • • Sept. 4, 1968 Jan. 8, 1966 Oct. 17, 1958 Feb. 18, 1958

Sept. 8, 1966 Mar. 17, 1960

s

Nov. Feb.

2

2

Date of Collection

Seference 1.10.

1962 1958

18.

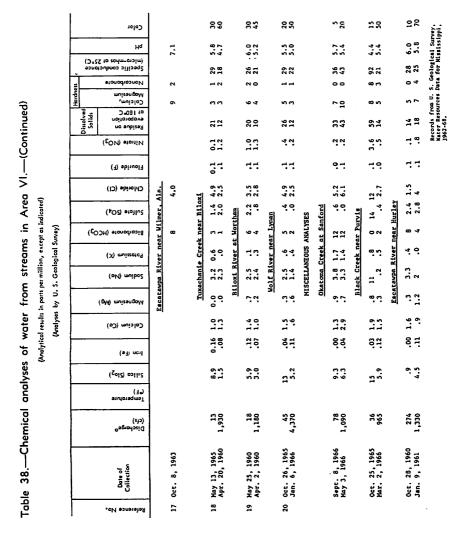
Aug.

1

May 5, 1959 Jan. 10, 1961

91

1


MISSISSIPPI GEOLOGICAL SURVEY

Records from U. S. Geological Survey, Water Resources Data for Mississippi 1962-68

		رعاء،		2 ⁵		20		9 °		ŝ		30 10		15		10			
		e;;		6.5 6.0		6.7 6.6		6.2 6.1		5.6		5.5		6.5		6.6 6.U			
	(D.c) apur	stovbrico officoq2 S to serim-crofim		71 19		51 E		79 75		27		24		18		65 72			
	3	otonediaonet :		50 00 00 50 50 60				m 0		00			•	0		٥g			
	Hordness	Caleium, Mannesium			,	9		10											
	Disslved Səlidi	Dugal in nchoicgora nc aubiset		53	-	39		39.73		28 31		26 31	i	22		77			
		15 ^{OTE storitt}		0.1		۰ <u>.</u>				<u></u>		ن .ن				3.6			
		(1) obineli		0.1		- ?		? ?		••		••		۰.					
		Citoride (Ct)		12	.1	17		14.0		3.7		9.5 9.5	1110	3.0	4	12 6.0			
licated)		(FOS: ARHA)	Resetta	8 9 1 11	dville	20	rtown	<u>.</u> ,	k Vale	• •	22	<u>, o</u>	AXLEEV	0	sa. La	15. ⁴			
pt as ind rvey)	1,50	Dth otherectionsis	1	50	ar Koo	6 2	r Tvlc	10	ear Oa	vo xo	at Goss	r 3	near B	8	<u>Boya lu</u>	<u>5</u> 5			
m, exec		(X) muissored	o Rive	1.9 1.4	Buffalo River near Woodville	1.8	to nea	÷.,	reek n		Creck	و ب	Creek	÷.	ncar	1.1 1:8			
er millie 1. Geolo		(ali) multici	lossehitto River at	6.8 8.1	alo R£	15 9.7	logue Chitto near Tylertown	7.6	Whitesand Creek near Oak Vale	3.4	iol idav	2.1	lttle	9.1.6	Pearl River near Bogalusa, La.	7.4			
Analytical results in parts par million, exist pi as indicated) Analytics by. U. S. Geological Survey		(Gyy) waysoulogy	llon	1.1	Buff	1.6	1301	1.5 8.	White	8.61	=	44	Luker Little Greek near Baxterville	10.	Pearl	1.0			
l results Analyses		Calcium (Ca)		3.8		3.5		2.0		1.1 2.1		1.3	-1	1.0		0.0			
nalytica (i		tog real		0.07		88		62		85		8 <u>-</u> -	:	23		10.			
\$. ² cis. eville		12		8.2 .0		12 9.2		9.8 9.6		9.8 8.9		4.4		5.8°			
		antararut. 171																,	
		ລາງທາງ ເຊິ່ງ ເຊິ່ງ		275 838		47 26S		342 240		172 173		4,5		72.4		1040 27,500			
*. :	 .	Beiv ui Cshuailan		Jet. 13, 1966 Seb. 23, 1967		Oct. 19, 1959 Nay 16, 1960		Oct. 14, 1964 July 28, 1965		Uct. 20, 1965 Jan.28, 1966		Oct. 20, 1465 May 10, 1966		0ct: "11" 1961		Oct. 21-31,1963 1049 Nar. 11-19,1964 27500			
		ودردا بالعد وارهم		88 8		85. n		35		5 5 5		9 N 9 N		2 0		8 2 2			
	•	-11																	

Table 38.—Chemical analyses of water from streams in Area VI.—(Continucd/

157

Specific areas with an abundance of water (along with other economic factors) should have advantages in attracting industry. Industry demands an adequate water supply at any proposed location in the State.

The Mississippi, Yazoo, Big Black, Pearl, Pascagoula and Tombigbee Rivers at certain locations have the potential of furnishing large water supplies without storage. Smaller streams across the State may contain better quality water but storage will have to be provided for large water demands.

Ample ground-water is available for municipal and small to medium sized industrial use in most areas of the State for the foreseeable future. The aquifers are not seriously being overpumped in any general area and water levels are declining at an average rate of 1 to 2 feet per year in areas of heavy pumpage. Ground water will continue to offer the best quality water and more economical forms of supply for most uses over the State. Large industry and some of the larger municipalities will continue to depend on surface water as their main source of supply. Tremendous volumes of surface water are available for use at particular locations in the State.

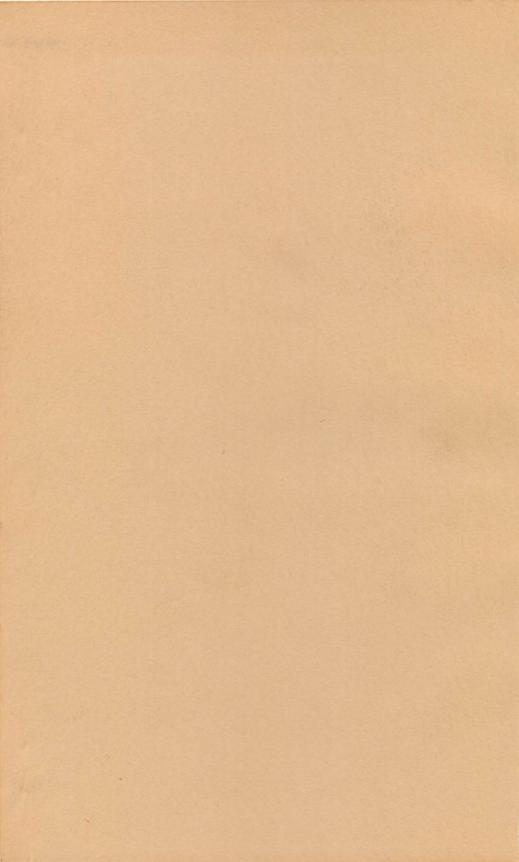
ACKNOWLEDGMENTS

Various agencies willingly provided information on the water resources in the State. The Mississippi State Board of Health provided copies of water analyses on water wells. The Mississippi Board of Water Commissioners provided completion records of numerous wells. The U. S. Geological Survey, Water Resources Division furnished well information on a number of wells which were unavailable from other sources. Various water well contractors provided well data on some specific wells used in the report.

11 -

.

MISSISSIPPI GEOLOGICAL SURVEY


SELECTED REFERENCES*

- Bicker, Alvin R., Jr., Shows, Thad N., Dinkins. Theo H., Jr., McCutcheon, Thomas E., Copiah County Geology and Mineral Resources: Mississippi Geological Survey Bulletin 110, 172 pp., 1969.
- Boswell, Ernest H., Cretaceous Aquifers of Northeastern Mississippi: Mississippi Board of Water Commissioners, Bulletin 63-10, 202 pp., 1963.
- Boswell, Ernest H., Thompson, F. H., and Shattles, D. E., Water for Industrial Development in Clarke, Jasper, Lauderdale, Newton, Scott and Smith Counties: Mississippi Research and Development Center, 62 pp., 1970.
- Brown, Glen Francis, Geology and Artesian Water of the Alluvial Plain in Northwestern Mississippi: Mississippi Geological Survey Bulletin 110, 424 pp., 1947.
- Callahan, J. A., Skelton, John, Everett, D. E., and Harvey, E. J., Available Water for Industry in Adams, Claiborne, Jefferson, and Warren Counties, Mississippi: Mississippi Industrial and Technological Research Commission, Bulletin 64-1, 45 pp., 1964.
- Cushing, E. M., Map Showing Altitude of the Base of Fresh Water in Coastal Plain Aquifers of the Mississippi Embayment: U. S. Geological Survey Hydrologic Investigation Atlas HA-221, 1966.
- Gaydos, Michael W., Chemical Composition of Mississippi Surface Waters 1945-62: Mississippi Board of Water Commissioners, Bulletin 65-1, 32 pp.
- Harvey, E. J., Records of Wells in the Alluvium in Northwestern Mississippi: Mississippi Board of Water Commissioners, Bulletin 56-1, 130 pp., 1956.
- Newcome, Roy, Jr., Configuration on the Base of the Fresh-Ground-Water Section in Mississippi: Mississippi Board of Water Commissioners, Water Resources Map 65-1, September 1965.
- Newcome, Roy, Jr., Shattles, D. E., and Humphreys, C. P., Jr., Water for the Growing Needs of Harrison County, Mississippi, Open-file Report: U. S. Geological Survey, Water Resources Division, 147 pp., 1966.

- Robinson, Wm. H., and Skelton, John, Minimum Flows at Stream-Gaging Stations in Mississippi: Mississippi Board of Water Commissioners, Bulletin 60-1, 91 pp., 1960.
- Shows, T. N., Broussard, W. L., and Humphreys, C. P., Jr., Water for Industrial Development in Forrest, Greene, Jones, Perry, and Wayne Counties, Mississippi: Mississippi Research and Development Center, 72 pp., 1966.
- Taylor, R. E., Humphreys, C. P., Jr., and Shattles, D. E., Water for Industrial Development in Covington, Jefferson Davis, Lamar, Lawrence, Marion, and Walthall Counties, Mississippi: Mississippi Research and Development Center, 114 pp., 1968.
- Tennessee Valley Authority, Division of Water Control Planning, Daily Discharges at TVA Stream Gages in the Tennessee River Basin, Report No. 7, 1964.
- Wasson, B. E., Source and Development of Public and Industrial Water Supplies in Northwestern Mississippi: Mississippi Board of Water Commissioners, Bulletin 65-2, 86 pp., 1965.
- U. S. Geological Survey, Water Resources Data for Mississippi, issued annually, 1962-68.
- *General References instead of the usual footnote type references of the Mississippi Geological Survey.

