

ADAMS COUNTY, MISSISSIPPI AND INCORPORATED AREAS

COMMUNITY NAME

COMMUNITY NUMBER

ADAMS COUNTY (UNINCORPORATED AREAS)

NATCHEZ, CITY OF

280209 280001

REVISED:

Federal Emergency Management Agency FLOOD INSURANCE STUDY NUMBER 28001CV000A

NOTICE TO FLOOD INSURANCE STUDY USERS

Communities participating in the National Flood Insurance Program (NFIP) have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study (FIS) report may not contain all data available within the repository. It is advisable to contact the community repository for any additional data.

Part or all of this FIS report may be revised and republished at any time. In addition, part of this FIS report may be revised by the Letter of Map Revision process, which does not involve republication or redistribution of the FIS. It is, therefore, the responsibility of the user to consult with community officials and to check the community repository to obtain the most current FIS report components.

Initial Countywide FIS Report Effective Date: September 29, 1989

Revised Countywide FIS Report Dates:

TABLE OF CONTENTS

Page

1.0	INTRODUCTION					
	1.1	Purpose of Study	1			
	1.2	Authority and Acknowledgments	1			
	1.3	Coordination	2			
2.0	AREA STUDIED					
	2.1	Scope of Study	2			
	2.2	Community Description	3			
	2.3	Principal Flood Problems	4			
	2.4	Flood Protection Measures	4			
3.0	ENGINEERING METHODS					
	3.1	Hydrologic Analyses	4			
	3.2	Hydraulic Analyses	5			
	3.3	Vertical Datum	7			
4.0	FLOODPLAIN MANAGEMENT APPLICATIONS					
	4.1	Floodplain Boundaries	8			
	4.2	Floodways	9			
5.0	INSURANCE APPLICATIONS					
6.0	FLOOD INSURANCE RATE MAP					
7.0	OTHER STUDIES					
8.0	LOCATION OF DATA					
9.0	BIBLIOGRAPHY AND REFERENCES					

TABLE OF CONTENTS - continued

FIGURES

Figure 1 - Floodway Schematic

Exhibit 1 - Flood Profiles

TABLES

5
11
14

EXHIBITS

Mississippi River	Panel 01P
St. Catherine Creek	Panel 02P-06P

Exhibit 2 - Flood Insurance Rate Map Index Flood Insurance Rate Map

Page

10

FLOOD INSURANCE STUDY ADAMS COUNTY, MISSISSIPPI AND INCORPORATED AREAS

1.0 INTRODUCTION

1.1 Purpose of Study

This Flood Insurance Study (FIS) revises and supersedes the FIS reports and/or Flood Insurance Rate Maps (FIRMs) in the geographic area of Adams County, Mississippi, including the City of Natchez and unincorporated areas of Adams County (hereinafter referred to collectively as Adams County).

This FIS aids in the administration of the National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973. This study has developed flood risk data for various areas of the community that will be used to establish actuarial flood insurance rates. This information will also be used by Adams County to update existing floodplain regulations as part of the Regular Phase of the National Flood Insurance Program (NFIP), and by local and regional planners to further promote sound land use and floodplain development. Minimum floodplain management requirements for participation in the NFIP are set forth in the Code of Federal Regulations at 44 CFR, 60.3.

In some states or communities, floodplain management criteria or regulations may exist that are more restrictive or comprehensive than the minimum Federal requirements. In such cases, the more restrictive criteria take precedence and the State (or other jurisdictional agency) will be able to explain them.

1.2 Authority and Acknowledgments

The sources of authority for this FIS report are the National Flood Insurance Act of 1968 and the Flood Disaster Protection Act of 1973.

September 29, 1989, Adams County Countywide FIS

The hydrologic and hydraulic analyses for this study were performed by the U.S. Geological Survey (USGS) (the Study Contractor) for the Federal Emergency Management Agency (FEMA), under Inter-Agency Agreement No. EMW-85-E-1823. This study was completed in February 1987.

Additional hydraulic information was obtained from the Flood Insurance Study for the City of Natchez and a U.S. Army Corps of Engineers (USACE) report titled "Flood Control in the Lower Mississippi Valley" (U.S. Dept. of Housing and Urban Development, 1977; USACE, 1976).

This Countywide FIS

The hydrologic and hydraulic analyses for this countywide FIS were performed by the State of Mississippi for the Federal Emergency Management Agency (FEMA), under Contract No. EMA-2007-CA-5774. This study was completed in July 2009.

The digital base map information files were provided by the U.S. Army Corps of Engineers—Vicksburg District, 4155 East Clay Street, Vicksburg, MS 39183, phone number (601) 631-5053. The digital orthophotography was acquired in March 2006, with the imagery processed to a 2-foot pixel resolution.

The digital FIRM was produced using the Mississippi State Plane Coordinate System, West Zone, FIPS ZONE 2302. The horizontal datum was the North American Datum of 1983, GRS 1980 spheroid. Distance units were measured in U.S. feet.

1.3 Coordination

An initial Consultation Coordination Officer's (CCO) meeting is held with representatives from FEMA, the community, and the study contractor to explain the nature and purpose of a FIS, and to identify the streams to be studied by detailed methods. A final CCO meeting is held with representatives from FEMA, the community, and the study contractor to review the results of the study.

September 29, 1989, Adams County Countywide FIS

A community meeting was held on February 11, 1985, to identify the flooding sources for this study.

On November 1 and 2, 1988, the results of this Flood Insurance Study were reviewed and accepted at final coordination meetings attended by representatives of the Study Contractor, FEMA, and the communities.

This Countywide FIS

For this countywide FIS, the Project Scoping Meeting was held on March 6, 2008 in Natchez, MS. Attendees for these meetings included representatives from the Mississippi Department of Environmental Quality, Mississippi Emergency Management Agency, FEMA National Service Provider, Adams County, the City of Natchez, and the Study Contractor. Coordination with county officials and Federal, State, and regional agencies produced a variety of information pertaining to floodplain regulations, available community maps, flood history, and other hydrologic data. All problems raised in the meetings have been addressed.

2.0 AREA STUDIED

2.1 Scope of Study

This FIS covers the geographic area of Adams County, Mississippi, and its incorporated communities listed in Section 1.1 Several flooding sources within the county were studied by approximate methods. Approximate analyses are used to study those areas having a low development potential or minimal flood hazards. The scope and methods of study were proposed to, and agreed upon, by FEMA and the State of Mississippi.

September 29, 1989, Adams County Countywide FIS

Flooding caused by overflow of St. Catherine Creek and the Mississippi River was studied in detail.

Areas having low development potential or minimal flood hazards were previously studied using approximate analyses. The results were shown on the Flood Insurance Study for the City of Natchez and the Flood Hazard Boundary Map for Adams County, Mississippi and are incorporated into this Flood Insurance Study (Department of Housing and Urban Development, 1977).

The areas studied were selected with priority given to all known flood hazard areas and areas of projected development or proposed construction through February 1992. The scope and methods of study were proposed to and agreed upon by FEMA and Adams County.

This Countywide FIS

For this countywide FIS, several flooding sources within the county were studied by approximate methods. Approximate analyses are used to study those areas having a low developmental potential or minimal flood hazards. The scope and methods of study were proposed to, and agreed upon, by FEMA and the State of Mississippi.

Floodplain boundaries of streams that have been previously studied by detailed methods were redelineated based on best available topographic information.

2.2 Community Description

Adams County is in southwestern Mississippi and is bordered on the west by the Mississippi River and Concordia and Tensas Parishes, Louisiana; on the south by Wilkinson County, Mississippi; on the north by Jefferson County, Mississippi; and on the east by Franklin County, Mississippi. Adams County is served by U.S. Highway 61, 84, and 98; State Highways 554 and 555; and the Canadian National Railroad. The 2007 population was reported to be 31,710 (U.S. Census Bureau, 2009).

The climate of Adams County is influenced mainly by its subtropical latitude, the huge landmass to the north, its proximity to the warm waters of the Gulf of Mexico, and the prevailing southerly winds. The minimum mean temperature is 48.6 °F in January, and the maximum mean temperature is 81.6 °F in July. Moisture is ample throughout the year, often with prolonged rainfall in the winter and spring due to warm air from the Gulf of Mexico overriding cooler air masses near the ground surface. The mean annual precipitation is 62 inches (Mississippi State Climatologist, 2009).

Adams County consists of approximately 448 square miles, 50 percent of which is farmland. Cattle are the main livestock raised in the area. Mineral resources in Adams County have made the area an economic leader in Mississippi; the county produces 26 percent of the State's natural gas and 30 percent of its crude oil.

2.3 Principal Flood Problems

The maximum flood of record on the Mississippi River in Adams County occurred in May 1973. On May 13, the flood peaked at the mouth of St. Catherine Creek at about 73.89 feet North American Vertical Datum of 1988 (NAVD 88). The USACE operated a stream gage on St. Catherine Creek from 1950-1958 about 0.5 mile downstream of U.S. Highway 551. The greatest known flood at the gaging station occurred on May 17, 1953, and had a peak discharge of about 31,000 cubic feet per second and a recurrence interval of greater than 100 years.

2.4 Flood Protection Measures

There are no local flood protection measures affecting the area studied along St. Catherine Creek. Mississippi River flooding has been reduced by channel improvements and regulation of flow through upstream reservoirs. Levees have been placed around some local businesses and industrial plants in the Mississippi River floodplain. The elevation and integrity of the levees were not determined. It has been ascertained that, with the exception of the levee around the Natchez Port area, these levees may not protect the community from rare events such as the 1-percent-annual-chance flood. The criteria used to evaluate protection against the 1-percent-annual-chance flood are 10 adequate design, including freeboard, 20 structural stability, and 30 proper operation and maintenance. Levees that do not protect against the 1-percent-annual-chance flood are not considered in the hydraulic analysis of the 1-percent-annual-chance flood zone.

3.0 ENGINEERING METHODS

For the flooding sources studied by detailed methods in the communities, standard hydrologic and hydraulic study methods were used to determine the flood hazard data required for this study. Flood events of a magnitude that are expected to be equaled or exceeded once on the average during any 10-, 50-, 100-, or 500-year period (recurrence interval) have been selected as having special significance for floodplain management and for flood insurance rates. These events, commonly termed the 10-, 50-, 100-, and 500-year floods, have a 10-, 2-, 1-, and 0.2-percent chance, respectively, of being equaled or exceeded during any year. Although the recurrence interval represents the long-term, average period between floods of a specific magnitude, rare flood increases when periods greater than 1 year are considered. For example, the risk of having a flood that equals or exceeds the 1-percent-annual-chance flood in any 50-year period is approximately 40 percent (4 in 10); for any 90-year period, the risk increases to approximately 60 percent (6 in 10). The analyses reported herein reflect flooding potentials based on conditions existing in the community at the time of completion of this study. Maps and flood elevations will be amended periodically to reflect future changes.

3.1 Hydrologic Analyses

Hydrologic analyses were carried out to establish peak discharge-frequency relationships for each flooding source studied by detailed methods affecting the community.

September 29, 1989, Adams County Countywide FIS Analyses

The hydrologic methods were selected based on a comparison of flood frequency estimates at the site of the discontinued gaging station downstream of U.S. Highway 551. The comparison indicates that the nine annual recorded peaks (1950-1958) are not representative of long-term flood frequency on this stream. The most representative estimate for streams in this part of Mississippi was determined by methods in the USGS report titled "Floods in Mississippi, Magnitude and Frequency" (U.S. Dept of Interior, 1961), which was used for the entire study reach. Urbanization does not significantly affect the 1-percent-annual chance flood in the study reach.

This Countywide FIS Analysis

Peak discharges were calculated based on USGS regional regression equations (U.S. Department of the Interior, 1991). For the discharges calculated based on regional regression equations, the rural regression values were modified to reflect stream gage weighting and/or urbanization as necessary.

A summary of the drainage area-peak discharge relationships for all the streams is shown in Table 1, "Summary of Discharges."

	DRAINAGE	I	PEAK DISCHARGES (cfs)			
FLOODING SOURCE AND LOCATION	<u>AREA (sq.</u> <u>mi.)</u>	<u>10-</u> percent	2-percent	<u>1-percent</u>	0.2-percent	
MISSISSIPPI RIVER						
At Interstate 20	1,444,400	*	*	2,250,000	*	
ST. CATHERINE CREEK						
At Mouth	80.0	*	*	31,000	*	
At Railroad	79.3	*	*	33,000	*	
At lower Woodville Road	75.7	*	*	33,000	*	
At confluence of Spanish Bayou	72.3	*	*	30,000	*	
About 0.4 mile downstream of U.S. Highway 61	63.2	*	*	30,000	*	
About 0.3 mile upstream of confluence of						
Sandy Branch	57.3	18,000	24,900	27,900	35,600	
About 400 feet downstream of Liberty Road	53.1	16,700	23,500	26,300	33,700	
At Railroad	44.6	14,700	20,400	22,800	29,100	
About 0.8 mile downstream of U.S. Highway 61	36.9	12,400	17,400	19,500	24,900	

TABLE 1. SUMMARY OF DISCHARGES

*Data not available

3.2 Hydraulic Analyses

Analyses of the hydraulic characteristics of flooding from the sources studied were carried out to provide estimates of the elevations of floods of the selected recurrence intervals. Users should be aware that flood elevations shown on the FIRM represent rounded whole-foot elevations and may not exactly reflect the elevations shown on the Flood Profiles or in the Floodway Data table in the FIS report. Flood elevations shown on the FIRM are primarily intended for flood insurance rating purposes. For construction and/or floodplain management purposes, users are cautioned to use the flood elevation data presented in this FIS report in conjunction with the data shown on the FIRM.

September 29, 1989, Adams County Countywide FIS Analyses

Analyses of the hydraulic characteristics of flooding from the sources studied were carried out to provide estimates of the elevations of floods of the selected recurrence intervals.

Valley cross sections were obtained from a field survey or estimated from the surveyed cross sections and adjusted for channel slope. Structural geometry and bridge opening sections for bridges were also obtained by field survey.

Locations of selected cross sections used in the hydraulic analyses are shown on the Flood Profiles and on the Flood Insurance Rate Map.

Roughness coefficients (Manning's "n") used in the hydraulic computations for St. Catherine Creek were chosen by engineering judgment and based on field observations. Roughness values averaged 0.031 for the channel and ranged from 0.05 to 0.17 for the overbank areas.

Water-surface elevations for the 1-percent-annual-chance headwater flood downstream of the confluence of Spanish Bayou were computed using WSPRO, a step-backwater computer program (U.S. Dept. of Transportation, 1986). Elevations upstream were computed using the HEC-2 step-backwater computer program (USACE, 1984). The starting water-surface elevations were estimated using the slope-conveyance method. Flood profiles for the Mississippi River were obtained from the USACE Lower Mississippi Valley report (USACE, 1976).

Flood profiles were drawn showing the computed water-surface elevations for floods of the selected recurrence intervals.

This Countywide FIS Analysis

Cross section geometries were obtained from a combination of terrain data and field surveys. Bridges and culverts located within the limited detailed study limits were field surveyed to obtain elevation data and structural geometry.

Downstream boundary conditions for the hydraulic models were set to normal depth using a starting slope calculated from values taken from topographic data, or where applicable, derived from the water-surface elevations. Water-surface profiles were computed through the use of the USACE HEC-RAS version 3.1.3 computer program (USACE, 2003). The model was run for the 1-percent-annual-chance storm for the limited detail and approximate studies.

The hydraulic analyses for this countywide FIS were based on unobstructed flow. The flood elevations shown on the Flood Profiles (Exhibit 1) are thus considered valid only if hydraulic structures remain unobstructed, operate properly, and do not fail.

Qualifying bench marks within a given jurisdiction that are cataloged by the National Geodetic Survey (NGS) and entered into the National Spatial Reference System (NSRS) as First or Second Order Vertical and have a vertical stability classification of A, B, or C are shown and labeled on the FIRM with their 6-character NSRS Permanent Identifier.

Benchmarks cataloged by the NGS and entered into the NSRS vary widely in vertical stability classification. NSRS vertical stability classifications are as follows:

Stability A: Monuments of the most reliable nature, expected to hold position/elevation well (e.g., mounted in bedrock)

Stability B: Monuments which generally hold their position/elevation well (e.g., concrete bridge abutment)

Stability C: Monuments which may be affected by surface ground movements (e.g., concrete monuments below frost line)

Stability D: Mark of questionable or unknown vertical stability (e.g., concrete monument above frost line, or steel witness post)

In addition to NSRS benchmarks, the FIRM may also show vertical control monument established by a local jurisdiction; these monuments will be shown on the FIRM with the appropriate designations. Local monuments will only be placed on the FIRM if the community has requested that they be included, and if the monuments meet the aforementioned NSRS inclusion criteria.

To obtain current elevation, description, and/or location information for benchmarks shown on the FIRM for this jurisdiction, please contact the Information Services Branch of the NGS at (301) 713-3242, or visit its website at http://www.ngs.noaa.gov.

Temporary vertical monuments are often established during the preparation of a flood hazard analysis for the purpose of establishing local vertical control. Although these monuments are not shown on the FIRM, they may be found in the Technical Support Data Notebook associated with the FIS report and FIRM. Interested individuals may contact FEMA to access this data.

3.3 Vertical Datum

All FIS reports and FIRMs are referenced to a specific vertical datum. The vertical datum provides a starting point against which flood, ground, and structure elevations can be referenced and compared. Until recently, the standard vertical datum in use for newly created or revised FIS reports and FIRMs was the National Geodetic Vertical Datum of 1929 (NGVD29). With the finalization of the North American Vertical Datum of 1988 (NAVD88), many FIS reports and FIRMs are being prepared using NAVD88 as the referenced vertical datum.

All flood elevations shown in this FIS report and on the FIRM are referenced to NAVD88. Structure and ground elevations in the community must, therefore, be referenced to NAVD88. It is important to note that adjacent communities may be referenced to NGVD29. This may result in differences in Base Flood Elevations (BFEs) across the corporate limits between the communities.

Ground, structure, and flood elevations may be compared and/or referenced to NGVD29 by applying a conversion factor. To convert elevations from NAVD88 to NGVD29, add 0.01 feet to the NAVD88 elevation. The 0.01 feet value is an average for the entire county. The adjustment value was determined using the USACE Corpscon 6.0.1 computer program (USACE, 2004) and topographic maps (U.S. Department of the Interior, 1963). The BFE's shown on the FIRM represent whole-foot rounded values. For example, a BFE of 12.4 feet will appear as 12 feet on the FIRM, and 12.6 feet as 13 feet. Users who wish to convert the elevations in this FIS report to NGVD29 should apply the stated conversion factor to elevations shown on the Flood Profiles and supporting data tables in the FIS report, which are shown at a minimum to the nearest 0.1-foot.

For more information regarding conversion between the NGVD and the NAVD, see the FEMA publication entitled *Converting the National Flood Insurance Program to the North American Vertical Datum of 1988* or contact the Vertical Network Branch, National Geodetic Survey, Coast and Geodetic Survey, National Oceanic and Atmospheric Administration, Rockville, Maryland 20910 (Internet address http://www.ngs.noaa.gov).

4.0 <u>FLOODPLAIN MANAGEMENT APPLICATIONS</u>

The NFIP encourages State and local governments to adopt sound floodplain management programs. Therefore, each FIS provides 1-percent-annual-chance flood elevations and delineations of the 1- and 0.2-percent-annual-chance floodplain boundaries and 1-percent-annual-chance floodway to assist communities in developing floodplain management measures. This information is presented on the FIRM and in many components of the FIS report, including Flood Profiles, Floodway Data Table and Summary of Stillwater Elevations Table. Users should reference the data presented in the FIS report as well as additional information that may be available at the local map repository before making flood elevation and/or floodplain boundary determinations.

4.1 Floodplain Boundaries

To provide a national standard without regional discrimination, the 1-percent-annual-chance flood has been adopted by FEMA as the base flood for floodplain management purposes. The 0.2-percent-annual-chance flood is employed to indicate additional areas of flood risk in the community. For each stream studied by detailed methods, the 1- and 0.2-annual-chance floodplain boundaries have been delineated using the flood elevations determined at each cross section. Between cross sections, the boundaries were interpolated using topographic maps at a scale of 1:24,000 with a contour interval of 20 feet (USGS, 1963).

The 1- and 0.2-percent-annual-chance floodplain boundaries are shown on the FIRM (Exhibit 2), On this map, the 1-percent-annual-chance floodplain boundary corresponds

to the boundary of the areas of special flood hazards (Zones A and AE); and the 0.2-percent-annual-chance floodplain boundary corresponds to the boundary of areas of moderate flood hazards. In cases where the 1- and 0.2-percent-annual-chance floodplain boundaries are close together, only the 1-percent-annual-chance floodplain boundary has been shown. Small areas within the floodplain boundaries may lie above the flood elevations but cannot be shown due to limitations of the map scale and/or lack of detailed topographic data.

For the streams studied by limited detailed and approximate methods, only the 1-percent-annual-chance floodplain boundary is shown on the FIRM (Exhibit 2). Floodplain boundaries for these streams, as well as those streams that have been previously studied by detailed methods, were generated using USGS 10-meter Digital Elevation Models (USGS), then refined using detailed hydrographic data (USGS, 1963).

4.2 Floodways

Encroachment on floodplains, such as structures and fill, reduces flood-carrying capacity, increases flood heights and velocities, and increases flood hazards in areas beyond the encroachment itself. One aspect of floodplain management involves balancing the economic gain from floodplain development against the resulting increase in flood hazard. For purposes of the NFIP, a floodway is used as a tool to assist local communities in this aspect of floodplain management. Under this concept, the area of the 1-percent-annual-chance floodplain is divided into a floodway and a floodway fringe. The floodway is the channel of a stream, plus any adjacent floodplain areas, that must be kept free of encroachment so that the 1-percent-annual-chance flood can be carried without substantial increases in flood heights. Minimum Federal standards limit such increases to 1.0 foot, provided that hazardous velocities are not produced. The floodways in this study are presented to local agencies as minimum standards that can be adopted directly or that can be used as a basis for additional floodway studies.

The floodway presented in this FIS report and on the FIRM was computed for certain stream segments on the basis of equal-conveyance reduction from each side of the floodplain. Floodway widths were computed at cross sections. Between cross sections, the floodway boundaries were interpolated. The results of the floodway computations have been tabulated for selected cross sections of detailed study streams (Table 2). For detailed study streams, in cases where the floodway and 1-percent-annual-chance floodplain boundaries are either close together or collinear, only the floodway boundary is shown.

Near the mouths of streams studied in detail, floodway computations are made without regard to flood elevations on the receiving water body. Therefore, "Without Floodway" elevations presented in Table 2, "Floodway Data," for certain downstream cross sections are lower than the regulatory flood elevations in that area, which must take into account the 1-percent-annual-chance flooding due to backwater from other sources.

Encroachment into areas subject to inundation by floodwaters having hazardous velocities aggravates the risk of flood damage, and heightens potential flood hazards by further increasing velocities. For detailed study streams, a listing of stream velocities at selected cross sections is provided in Table 2. In order to reduce the risk of property damage in areas where the stream velocities are high, the county may wish to restrict development in areas outside the floodway.

The area between the floodway and 1-percent-annual-chance floodplain boundaries is termed the floodway fringe. The floodway fringe encompasses the portion of the floodplain that could be completely obstructed without increasing the water-surface elevation of the 1-percent-annual-chance flood more than 1.0 foot at any point. Typical relationships between the floodway and the floodway fringe and their significance to floodplain development are shown in Figure 1.

Floodways were calculated for St. Catherine Creek.

FLOODWAY SCHEMATIC

Figure 1

) EVATION 8)	WITH OODWAY INCREASE	* * * * * * * * * * * * * * * * * * *	4	EEK
BASE FLOOI ATER-SURFACE EL (FEET NAVD 8	WITHOUT FLOODWAY FL	* * 78.3 78.3 81.8 87.9 92.1 97.7 97.7 106.4 106.7 106.7 117.3 121.6 121.6 121.6	WAY DAT.	ERINE CR
ΦM	REGULATORY	* * 787.9 81.8 87.9 94.2 106.7 106.7 110.5 110.5 110.5 1117.3 124.6	FLOOD	ST. CATH
	MEAN VELOCITY (FEET PER SECOND)	* * * いみままのまめののまますのまのま * * * とらこていらいて オフのののてこので、 とうこうして サフのののて こので、		
FLOODWA	SECTION AREA (SOUARE FEET)	5,728 5,728 5,728 5,729 5,729 5,770 5,770 5,770 5,770 5,729 5,729 5,729 5,729 5,231		S
	WIDTH (FEET)	205 205 205 205 205 205 205 205 205 205	NT AGENCY	AREA
CE	DISTANCE ¹	7,152 17,100 19,300 20,300 25,468 31,418 31,418 33,868 31,418 33,668 41,296 43,714 45,864 43,714 45,864 43,714 45,864 52,064 52,064 52,064 52,599 56,119	Y MANAGEMEN	ORATED
FLOODING SOUF	CROSS SECTION	ST. CATHERINE CREEK B2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C	FEDERAL EMERGENC ADAMS C	AND INCORP

5.0 **INSURANCE APPLICATION**

For flood insurance rating purposes, flood insurance zone designations are assigned to a community based on the results of the engineering analyses. These zones are as follows:

Zone A

Zone A is the flood insurance risk zone that corresponds to the 1-percent-annual-chance floodplains that are determined in the FIS by approximate methods. Because detailed hydraulic analyses are not performed for such areas, no base (1-percent-annual-chance) flood elevations (BFEs), or base flood depths are shown within this zone.

Zone AE

Zone AE is the flood insurance risk zone that corresponds to the 1-percent-annual-chance floodplains that are determined in the FIS by detailed methods. In most instances, whole-foot BFEs derived from the detailed hydraulic analyses are shown at selected intervals within this zone.

Zone AH

Zone AH is the flood insurance rate zone that corresponds to the areas of 1-percent-annualchance shallow flooding (usually areas of ponding) where average depths are between 1 and 3 feet. Whole-foot base flood elevations derived from the detailed hydraulic analyses are shown at selected intervals within the zone.

Zone AO

Zone AO is the flood insurance rate zone that corresponds to the areas of 1-percent-annualchance shallow flooding (usually sheet flow on sloping terrain) where the average depths are between 1 and 3 feet. Average whole-foot depths derived from the detailed hydraulic analyses are shown within the zone.

Zone A99

Zone A99 is the flood insurance rate zone that corresponds to areas of the 1-percent floodplain that will be protected by a Federal flood protection system where construction has reached specified statutory milestones. No base flood elevations or depths are shown within this zone.

Zone V

Zone V is the flood insurance rate zone that corresponds to the 1-percent coastal floodplains that have additional hazards associated with storm waves. Because approximate hydraulic analyses are performed for such areas, no base flood elevations are shown within this zone.

Zone VE

Zone VE is the flood insurance rate zone that corresponds to the 1-percent coastal floodplains that have additional hazards associated with storm waves. Whole-foot base flood elevations derived from the detailed hydraulic analyses are shown at selected intervals within this zone.

Zone X

Zone X is the flood insurance risk zone that corresponds to areas outside the 0.2-percent annual chance floodplain, areas within the 0.2-percent annual chance floodplain, areas of 1-percent-annual-chance flooding where average depths are less than 1 foot, areas of 1-percent-annual-chance flooding where the contributing drainage area is less than 1 square mile, and areas protected from the base flood by levees. No BFEs or depths are shown within this zone.

Zone D

Zone D is the flood insurance rate zone that corresponds to unstudied areas where flood hazards are undetermined, but possible.

6.0 FLOOD INSURANCE RATE MAP

The FIRM is designed for flood insurance and floodplain management applications.

For flood insurance applications, the map designates flood insurance risk zones as described in Section 5.0 and, in the 1-percent-annual-chance floodplains that were studied by detailed methods, shows selected whole-foot BFEs or average depths. Insurance agents use the zones and BFEs in conjunction with information on structures and their contents to assign premium rates for flood insurance policies.

For floodplain management applications, the map shows by tints, screens, and symbols, the 1and 0.2-percent-annual-chance floodplains, floodways, and the locations of selected cross sections used in the hydraulic analyses and floodway computations.

The countywide FIRM presents flooding information for the entire geographic area of Adams County. Previously, FIRMs were prepared for each incorporated community and the unincorporated areas of the County identified as flood-prone. This countywide FIRM also includes flood-hazard information that was presented separately on Flood Boundary and Floodway Maps (FBFMs), where applicable. Historical data relating to the maps prepared for each community, up to and including this countywide FIS are presented in Table 3, "Community Map History."

FIRM REVISIONS DATE	ł	September 29, 1989				HISTORY
FIRM EFFECTIVE DATE	September 29, 1989	June 1, 1978				OMMUNITY MAP
FLOOD HAZARD BOUNDARY MAP REVISIONS DATE	ł	1				S
INITIAL	November 25, 1977	February 8, 1974				ANAGEMENT AGENCY JNTY, MS ATED AREAS
COMMUNITY NAME	Adams County (Unincorporated Areas)	City of Natchez				FEDERAL EMERGENCY MA ADAMS COU AND INCORPOR
L L					I	TABLE 3

7.0 <u>OTHER STUDIES</u>

Information pertaining to revised and unrevised flood hazards for each jurisdiction within Adams County has been compiled into this FIS. Therefore, this FIS supersedes all previously printed FIS reports, FIRMs, and/or FBFMs for all of the incorporated and unincorporated jurisdictions within Adams County and should be considered authoritative for purposes of the NFIP.

8.0 LOCATION OF DATA

Information concerning the pertinent data used in the preparation of this study can be obtained by contacting Federal Insurance and Mitigation Division, FEMA Region IV, Koger-Center — Rutgers Building, 3003 Chamblee Tucker Road, Atlanta, GA 30341.

9.0 BIBLIOGRAPHY AND REFERENCES

Mississippi State Climatologist (2009), Website, Starkville, Mississippi, http://www.msstate.edu/dept/GeoSciences/climate/

U.S. Army Corps of Engineers, Hydrologic Engineering Center, <u>HEC-1 Flood Hydrograph</u> <u>Package</u>, Davis, California, September 1990.

U.S. Army Corps of Engineers, Hydrologic Engineering Center, <u>HEC-2 Water Surface Profiles</u> <u>Generalized Computer Program</u>, Davis, California, 1976.

U.S. Army Corps of Engineers, Lower Mississippi Valley District, and Mississippi River Commission, Public Affairs Office, <u>Flood Control in the Lower Mississippi Valley</u>, Vicksburg, Mississippi, March 1976.

U.S. Army Corps of Engineers, Hydrologic Engineering Center, <u>HEC-2 Water Surface Profiles</u>, <u>Computer Program 723-X6-L202A</u>, Davis, California, April 1984.

U.S. Army Corps of Engineers, Hydrologic Engineering Center, <u>HEC-RAS</u> <u>River Analysis System, User's Manual, version 3.1.3</u>, Davis, California, May 2003.

U.S. Army Corps of Engineers, Vicksburg District, <u>Hydrologic Analysis of the Coldwater</u> <u>River Watershed, Final Report</u>, August 1990.

U.S. Army Corps of Engineers, Topographic Engineering Center, <u>Corpscon Version 6.0.1</u>, Alexandria, Virginia, August 2004

U.S. Census Bureau, Website-2007 Population Estimate, February 10, 2009.

U.S. Geological Survey, Flood Frequency of Mississippi Streams, Jackson, Mississippi, 1976.

U.S. Geological Survey, <u>7.5-Minute Series Topographic Maps</u>, Scale 1:24,000, Contour Interval 20 feet: Natchez, Mississippi-Louisiana, 1963, photorevised 1976; Washington, Mississippi, 1963, photorevised 1976.

U.S. Geological Survey, <u>An Approach to Estimating Flood Frequency for Urban Areas in</u> <u>Oklahoma</u>, July 1974

U.S. Geological Survey, Open File Report 83-685, <u>Floods of April 1983 in Southern Mississippi</u> and Southeastern Louisiana, D.D. Carlson and G.D. Firda, 1983.

Flood Frequency of Mississippi Streams, B.E. Colson and J.W. Hudson, Jackson, Mississippi, 1976.

U.S. Department of Housing and Urban Development, Federal Insurance Administration, <u>Flood</u> <u>Insurance Study</u>, City of Natchez, Adams County, Mississippi, December 1977.

U.S. Department of the Interior, Geological Survey, Interagency Advisory Committee on Water Data, Office of Water Data Coordination, Hydrology Subcommittee, Bulletin No. 17B, Guidelines for Determining Flood Flow Frequency, September, 1981, revised March, 1982.

U.S. Department of the Interior, Geological Survey, <u>Flood Characteristics of Mississippi Streams</u>, Water-Resources Investigations Report 91-4037, Jackson, MS, 1991.

U.S. Department of the Interior, Geological Survey, Open-File Report, <u>Floods in Mississippi</u>, <u>Magnitude and Frequency</u>, K.V. Wilson and I.L. Trotter, 1961.

U.S. Department of Transportation, Federal Highway Administration, Report No. FHWA/RD-86/108, <u>Bridge Waterways Analysis Model: Research Report</u>, J.O. Shearman, W.H. Kirby, V.R. Snyder, and H.N. Flippo, July 1986.

U.S. Department of Housing and Urban Development, Federal Insurance Administration, <u>Flood</u> <u>Insurance Study</u>, City of Natchez, Adams County, Mississippi, December 1977.

U.S. Department of Housing and Urban Development, Federal Insurance Administration, <u>Flood</u> <u>Hazard Boundary Map</u>, Adams County, Unincorporated Areas, Mississippi, November 1977

U.S. Department of the Interior, Geological Survey, <u>7.5-Minute Series Topographic Maps</u>; Scale 1:24,000, Contour Intervals 20 feet: Buck Island, 1988; Church Hill, 1988; Cranfield, 1988, photorevised 2000; Deer Park, 1983; Dolorosa, 1988, photorevised 2000; Fairview, 1983; Ferriday North, 1999; Ferriday South, 1995; Garden City, 2000; Jeannette, 1988, photorevised 2000; Kingston, 1988; Lake Mary, 1965; Lessley, 1988; Natchez, 1963; Pine Ridge, 1963; Shaw Laws, 1967; Sibley, 1988; Slocum, 1983; Spokane, 1963; Washington, 1963.

